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1 Introduction

This paper derives the Schrödinger equation in one-
dimension from axioms based on probabilistic mea-
surements and constraints imposed by classical ex-
pectations. The Lemmas found in the appendix are
segregated based on the fact that they are purely
mathematical and do not depend on any of the ax-
ioms presented below. Definitions can be found in
a separate appendix. Where appropriate, the equal
sign in an equation has been labelled with the num-
ber of the primary theorem (T), lemma (L), or defini-
tion (D) used. This paper also introduces a special
notation to indicate the results of a measurement.
The non-deterministic operator M̂?

â represents the
effect of the measurement of the quantity â on a
state, which is to collapse the state to an eigen-
state of â. The non-deterministic function M?

â (|ψ〉)
represents the value obtained by a measurement of
the quantity â. In both cases, the star denotes the
fact that these expressions are non-deterministic so
M̂?
â |ψ〉 6= M̂?

â |ψ〉 and M?
â (|ψ〉) 6= M?

â (|ψ〉) in gen-
eral.

2 Axioms

Axiom 1. For all observables â and all states |ψ〉,
measurement of the quantity â on state |ψ〉 results in
a transformation to the state M̂?

â |ψ〉 = |a〉 for some
eigenstate |a〉 of â.

Axiom 2. For all observables â and all states |ψ〉,
the probability of obtaining a measured value of a
upon measurement of the quantity â on state |ψ〉 is
given by P [M?

â (|ψ〉) = a] = | 〈ψ| a〉 |2, where |a〉 is
an eigenstate of â with eigenvalue a.

Axiom 3. There exist observables x̂ and p̂, with
no explicit time dependence, that satisfy d

dt〈x̂〉ψ =
〈p̂〉ψ/m and d

dt〈p̂〉ψ = −〈V ′(x̂)〉ψ where m is a con-
stant and V is an arbitrary function. We call these
observables the position and momentum respectively.

Axiom 4. There exists an analytic operator-valued
function of time duration τ̂(δt) = τ(x̂, p̂, δt) such
that for all states |ψ(t)〉, τ̂(δt) |ψ(t)〉 = |ψ(t+ δt)〉.
We call this operator-valued function the time-
evolution operator (which is a slight abuse of nomen-
clature).

Axiom 5. All non-trivial operators that are con-
served for all choices of V can be written as a func-
tion of a single conserved operator. We call this op-
erator the Hamiltonian.

3 Theorems

Theorem 1. Let â be an observable and |a〉 be an
eigenstate of â with eigenvalue a. Then M?

â (|a〉) = a.

Proof.

1 D17= | 〈a| a〉 |2 A2= P [M?
â (|a〉) = a]

So the probability of the consequent being true is
one, which completes the proof.

Theorem 2. Let â be an observable and let |a1〉 and
|a2〉 be eigenstates of â with eigenvalues a1 and a2

respectively. Then 〈a1| a2〉 = δa1a2.

Proof.

| 〈a1| a2〉 |2
A2= P [M?

â (|a1〉) = a2]

T1= P [a1 = a2] = δa1a2

Theorem 3. Let â be an observable. Then∑
a |a〉 〈a| = Î, where |a〉 is any eigenstate of â

with eigenvalue a (such an eigenstate may be non-
unique).

Proof. Consider an arbitrary state |ψ〉 and an arbi-
trary vector in the span of eigenstates of â, |ψa〉 =∑

a ca |a〉. Let |ψr〉 = |ψ〉 − |ψa〉. Taking the inner
product with |a′〉,〈

a′
∣∣ ψr〉 =

〈
a′
∣∣ ψ〉−∑

a

ca
〈
a′
∣∣ a〉

T2=
〈
a′
∣∣ ψ〉−∑

a

caδa′a =
〈
a′
∣∣ ψ〉− ca′

Let the constants ca be defined by ca = 〈a| ψ〉 so
that 〈a| ψr〉 = 0 for all |a〉. Then

〈ψ| ψ〉 =

(∑
a′

〈
a′
∣∣ c∗a′ + 〈ψr|

)(∑
a

ca |a〉+ |ψr〉

)



=
∑
a′

∑
a

c∗a′ca
〈
a′
∣∣ a〉+ 〈ψr| ψr〉

T2=
∑
a′

∑
a

c∗a′caδa′a + 〈ψr| ψr〉

=
∑
a

|ca|2 + 〈ψr| ψr〉

=
∑
a

| 〈a| ψ〉 |2 + 〈ψr| ψr〉

A2=
∑
a

P [M?
â (|ψ〉) = a] + 〈ψr| ψr〉

D20=
∑
a

P [|âM̂?
â |ψ〉 | = a] + 〈ψr| ψr〉

A1=
∑
a

P [|â
∣∣a′〉 | = a] + 〈ψr| ψr〉

=
∑
a

P [a′ = a] + 〈ψr| ψr〉

= 1 + 〈ψr| ψr〉

But by since |ψ〉 is a state, 〈ψ| ψ〉 = 1, so 〈ψr| ψr〉 =
0. This can only be true if |ψr〉 = 0 by the definition
of an inner product. Therefore,

|ψ〉 = |ψa〉 =
∑
a

|a〉 〈a| ψ〉 =

(∑
a

|a〉 〈a|

)
|ψ〉

So by Definition 7,
∑

a |a〉 〈a| = Î.

Theorem 4. Let α̂1 and α̂2 be linear operators. If
α̂1 |a〉 = α̂2 |a〉 for all eigenstates |a〉 of some observ-
able â, then α̂1 = α̂2.

Proof. For any state |ψ〉 we have

α̂1 |ψ〉
T3= α̂1

∑
a

|a〉 〈a| ψ〉

D9=
∑
a

α̂1 |a〉 〈a| ψ〉 =
∑
a

α̂2 |a〉 〈a| ψ〉

D9= α̂2

∑
a

|a〉 〈a| ψ〉 T3= α̂2 |ψ〉

By Definition 7, α̂1 = α̂2.

Theorem 5. For all observables â and all states |ψ〉,
〈â〉ψ = 〈ψ| â |ψ〉.

Proof.

〈â〉ψ
D21=

∑
a

aP [M?
â (|ψ〉) = a]

A2=
∑
a

a| 〈ψ| a〉 |2

L1=
∑
a

a 〈ψ| a〉 〈a| ψ〉

D14=
∑
a

〈ψ| â |a〉 〈a| ψ〉

D9=

〈
ψ

∣∣∣∣∣ â
(∑

a

|a〉 〈a|

)∣∣∣∣∣ψ
〉

T3= 〈ψ| â |ψ〉

Theorem 6. There exists a Hermitian operator
Ĥ = H(x̂, p̂), where H is analytic, and a real con-
stant ~ such that for all states |ψ〉, Ĥ |ψ(t)〉 =
i~ d
dt |ψ(t)〉.

Proof. By Axiom 4, there exists an analytic
operator-valued function τ̂(dt) such that

τ̂(δt) |ψ(t)〉 = |ψ(t+ δt)〉

for all states |ψ(t)〉 where δt is any duration of time.
If we let δt = dt, where dt is an infinitesimal dura-
tion of time and expand τ̂(dt) as a power series in dt
(which works because τ̂(δt) is analytic), we obtain

τ̂(dt) = ĉ0 + ĉ1dt+ ĉ2dt
2 + · · · = ĉ0 + ĉ1dt

where terms of order dt2 have been dropped because
dt is infinitesimal. In the limit dt→ 0, we have

τ̂(0) |ψ(t)〉 = |ψ(t)〉

So τ̂(0) is the identity operator on states, which im-
plies that ĉ0 = Î. The norms of states are unity at
all times, so

〈ψ(t)| ψ(t)〉 D17= 〈ψ(t+ dt)| ψ(t+ dt)〉

=
〈
ψ(t)

∣∣∣ (Î + ĉ†1dt)(Î + ĉ1dt)
∣∣∣ψ(t)

〉
=
〈
ψ(t)

∣∣∣ Î + (ĉ†1 + ĉ1)dt
∣∣∣ψ(t)

〉
= 〈ψ(t)| ψ(t)〉+ dt

〈
ψ(t)

∣∣∣ ĉ†1 + ĉ1

∣∣∣ψ(t)
〉

Therefore 〈
ψ(t)

∣∣∣ ĉ†1 + ĉ1

∣∣∣ψ(t)
〉

= 0



Since ĉ†1 + ĉ1 is Hermitian, by Lemma 9 we have
ĉ†1 + ĉ1 = 0 or ĉ†1 = −ĉ1. Define Ĥ = i~ĉ1, where ~ is
an unspecified real constant. Then Ĥ is a Hermitian
operator because Ĥ† L4= −i~ĉ†1 = i~ĉ1 = Ĥ. So we
have

τ̂(dt) = Î − iĤdt/~

for some Hermitian operator Ĥ. Now by Axiom 4,
τ̂(dt) = τ(x̂, p̂, dt), and Ĥ is a constant with respect
to time, so Ĥ = H(x̂, p̂). Since τ is analytic, H must
be also. Now we can write down an expression for
the time derivative of states.

d

dt
|ψ(t)〉 = lim

dt→0

|ψ(t+ dt)〉 − |ψ(t)〉
dt

A4= lim
dt→0

τ̂(dt) |ψ(t)〉 − |ψ(t)〉
dt

= lim
dt→0

(Î − iĤdt/~) |ψ(t)〉 − |ψ(t)〉
dt

= lim
dt→0

− i
~Ĥdt |ψ(t)〉

dt

= − i
~
Ĥ |ψ(t)〉

Therefore Ĥ |ψ(t)〉 = i~ d
dt |ψ(t)〉 for some Hermitian

operator Ĥ = H(x̂, p̂) and some real constant ~.

Theorem 7. For all linear operators α̂ and for all
states |ψ(t)〉, d

dt〈α̂〉ψ = 1
i~〈[α̂, Ĥ]〉ψ + 〈∂α̂∂t 〉ψ.

Proof.
d

dt
〈α̂〉ψ

T5=
d

dt
〈ψ(t)| α̂ |ψ(t)〉

=
(
d

dt
〈ψ(t)|

)
α̂ |ψ(t)〉+

〈
ψ(t)

∣∣∣∣ ∂α̂∂t
∣∣∣∣ψ(t)

〉
+ 〈ψ(t)| α̂

(
d

dt
|ψ(t)〉

)
Taking the Hermitian conjugate of the equation in
Theorem 6 we obtain 〈ψ(t)| Ĥ = −i~ d

dt 〈ψ(t)|, so

T6= − 1
i~

〈
ψ(t)

∣∣∣ Ĥα̂ ∣∣∣ψ(t)
〉

+
〈
ψ(t)

∣∣∣∣ ∂α̂∂t
∣∣∣∣ψ(t)

〉

+
1
i~

〈
ψ(t)

∣∣∣ α̂Ĥ ∣∣∣ψ(t)
〉

D8=
1
i~

〈
ψ(t)

∣∣∣ α̂Ĥ − Ĥα̂ ∣∣∣ψ(t)
〉

+
〈
ψ(t)

∣∣∣∣ ∂α̂∂t
∣∣∣∣ψ(t)

〉
T5=

1
i~
〈[α̂, Ĥ]〉ψ +

〈
∂α̂

∂t

〉
ψ

Theorem 8. [x̂, Ĥ] = i~p̂/m and [p̂, Ĥ] =
−i~V ′(x̂).

Proof. By Axiom 3, there exist observables x̂ and p̂,
with no explicit time-dependence, that satisfy

d

dt
〈x̂〉ψ = 〈p̂〉ψ/m

and
d

dt
〈p̂〉ψ = −〈V ′(x̂)〉ψ

for all states |ψ〉. By Theorem 7, we can write

−1
~
〈i[x̂, Ĥ]〉ψ = 〈p̂〉ψ/m

and
−1

~
〈i[p̂, Ĥ]〉ψ = −〈V ′(x̂)〉ψ

Observables and functions of observables are Hermi-
tian, so the right hand side operators are Hermitian.
By Lemma 10, the left hand side operators are Her-
mitian. So by Lemma 9,

[x̂, Ĥ] = i~p̂/m

and
[p̂, Ĥ] = −i~V ′(x̂)

Theorem 9. For all states |ψ〉, d
dt〈i[x̂, p̂]〉ψ = 0.

Proof.

d

dt
〈i[x̂, p̂]〉ψ

T7=
1
~
〈[[x̂, p̂], Ĥ]〉ψ

L12= −1
~
〈[[p̂, Ĥ], x̂] + [[Ĥ, x̂], p̂]〉ψ

T8= −1
~
〈[−i~V ′(x̂), x̂] + [−i~p̂/m, p̂]〉ψ

D13= 0

Theorem 10. There exists a real constant ~ such
that [x̂, p̂] = i~.

Proof. By Theorem 9,

d

dt
〈i[x̂, p̂]〉ψ = 0

And by Lemma 10, i[x̂, p̂] is Hermitian, which means
i[x̂, p̂] is a conserved quantity. But by Theorem 7, Ĥ
is also a conserved quantity. So by Axiom 5, we have
three possibilities: i[x̂, p̂] can be written as a func-
tion of Ĥ, Ĥ can be written as a function of i[x̂, p̂], or
one of these two operators is trivial. By Theorem 8,
we see that Ĥ must depend on V , while i[x̂, p̂] does
not, so Ĥ cannot be written as a function of i[x̂, p̂].



It remains to show that i[x̂, p̂] cannot be written as
a function of Ĥ [MISSING STEPS]. Therefore one
must be trivial. If Ĥ was trivial, then by Theorem 8,
p̂ would be zero. This contradicts Axiom 3 because
the zero operator does not satisfy the definition of
an observable, so Ĥ cannot be trivial. Therefore,
i[x̂, p̂] is a trivial conserved operator, so we can write
i[x̂, p̂] = −~Î for some constant ~. Since i[x̂, p̂] is
Hermitian, by Lemma 8, ~ must be real. Previously,
the value of ~ was undetermined, but now we use
this commutator to define its magnitude. Multiply-
ing both sides by −i we obtain [x̂, p̂] = i~ for some
real constant ~.

Theorem 11. For all states |ψ〉, i~ d
dt |ψ(t)〉 =(

p̂2

2m + V (x̂)
)
|ψ(t)〉.

Proof. By Theorem 6, Ĥ = H(x̂, p̂) for some ana-
lytic function H, and by Theorem 10, [x̂, p̂] = i~, so
by Lemma 16 we can write,

Ĥ = H(x̂, p̂) = H0(x̂) +H1(x̂)p̂+H2(x̂)p̂2 + · · ·

By Theorem 8,

i~
m
p̂
T8= [x̂, Ĥ] =

[
x̂,
∞∑
k=0

Hk(x̂)p̂k
]

L11=
∞∑
k=0

[x̂, Hk(x̂)p̂k]

L13=
∞∑
k=0

Hk(x̂)[x̂, p̂k]

L14=
∞∑
k=0

Hk(x̂)(i~kp̂k−1)

Therefore, H2(x̂) = 1
2m while all other Hk(x̂) are

zero except perhaps H0(x̂) because it is multiplied
by k = 0. So Ĥ = H0(x̂) + p̂2/2m. Again using
Theorem 8,

−i~V ′(x̂) T8= [p̂, Ĥ] = [p̂, H0(x̂)]

By Lemma 15, H0(x̂) = V (x̂), so

Ĥ =
p̂2

2m
+ V (x̂)

So by Theorem 6, i~ d
dt |ψ(t)〉 =

(
p̂2

2m + V (x̂)
)
|ψ(t)〉

for all states |ψ〉.

4 Appendix: Definitions

Definition 1. A vector |χ〉 is an element of a Hilbert
space.

Definition 2. The Hermitian conjugate of a vector,
denoted |χ〉†, is the complex conjugate of its trans-
pose i.e. |χ〉† = |χ〉T∗. For aesthetics we write this
as 〈χ|.

Definition 3. The inner product of two vectors |χ1〉
and |χ2〉 is the matrix product 〈χ1| |χ2〉. For aesthet-
ics we write this as 〈χ1| χ2〉. We omit the proof that
this satisfies the mathematical axioms for an inner
product.

Definition 4. Two vectors |χ1〉 and |χ2〉 are orthog-
onal if and only if 〈χ1| χ2〉 = 0.

Definition 5. The norm of a vector, | |χ〉 |, is√
〈χ| χ〉. We omit the proof that this satisfies the

mathematical axioms for a norm.

Definition 6. An operator α̂ is a mapping from vec-
tors to vectors.

Definition 7. Two operators α̂1 and α̂2 are equal
if and only if α̂1 |χ〉 = α̂2 |χ〉 for all vectors |χ〉.

Definition 8. The sum/difference of two operators
α̂1 and α̂2, written α̂1 + α̂2 or α̂1 − α̂2, is the oper-
ator defined by (α̂1 ± α̂2) |χ〉 = α̂1 |χ〉 ± α̂2 |χ〉, for
any vector |χ〉.

Definition 9. A linear operator α̂ is an operator
that satisfies α̂(c1 |χ1〉+c2 |χ2〉) = c1α̂ |χ1〉+c2α̂ |χ2〉
for all vectors |χ1〉 and |χ2〉 and all constants c1 and
c2.

Definition 10. The Hermitian conjugate of an op-
erator α̂, written α̂†, is the operator that satisfies
(α̂ |χ〉)† = 〈χ| α̂†.

Definition 11. An operator α̂ is Hermitian if and
only if α̂ is a linear operator and α̂† = α̂.

Definition 12. An operator α̂ is unitary if and only
if α̂ is a linear operator and α̂†α̂ = Î.

Definition 13. The commutator of two operators
α̂1 and α̂2, written [α̂1, α̂2], is the operator α̂1α̂2 −
α̂2α̂1.

Definition 14. An eigenvector of an operator α̂,
written |α〉, is a vector that satisfies α̂ |α〉 = α |α〉,
where α is a constant.

Definition 15. The eigenvalue of an eigenvector
|α〉 of an operator α̂ is the constant α that satisfies
α̂ |α〉 = α |α〉.



Definition 16. An observable â is a Hermitian op-
erator such that all states are in the span of any set
of vectors containing at least one eigenvector of â for
every distinct eigenvalue of â.

Definition 17. A state |ψ(t)〉 is a time-dependent
vector with unit norm 〈ψ(t)| ψ(t)〉 = 1 at all times.
When time is not important we write |ψ(t)〉 as |ψ〉,
even though the time dependence is still there.

Definition 18. An eigenstate of operator α̂ is a
state that is an eigenvector of α̂.

Definition 19. A measurement corresponding to
observable â, written M̂?

â , is a non-deterministic
pseudo-operator taking states to states in a prob-
abilistic manner.

Definition 20. A measured value a correspond-
ing to the observable â for a particular measure-
ment is the eigenvalue of the eigenvector returned
by that measurement, which can be expressed as
M?
â (|ψ〉) = |âM̂?

â |ψ〉 |.

Definition 21. The expectation value of observable
â in state |ψ〉, 〈â〉ψ is the probability-weighted sum
of all possible measured values of â. That is

〈â〉ψ =
∑
a

aP [M?
â (|ψ〉) = a]

Definition 22. A conserved operator is a Hermitian
operator â that satisfies d

dt〈â〉ψ = 0 for all states |ψ〉.
A conserved operator is called non-trivial if it is non-
zero and not proportional to the identity operator.

5 Appendix: Lemmas

Lemma 1. For any two vectors |χ1〉 and |χ2〉,
(〈χ1| χ2〉)∗ = 〈χ2| χ1〉.

Proof. For any vectors |χ1〉 and |χ2〉, it is always true
that |χ1〉T |χ2〉 = |χ2〉T |χ1〉 based on the definition
of vectors. Therefore,

(〈χ1| χ2〉)∗
D2=
(
|χ1〉† |χ2〉

)∗ D2= |χ1〉T |χ2〉∗

= (|χ2〉∗)T |χ1〉
D2= |χ2〉† |χ1〉

D2= 〈χ2| χ1〉

Lemma 2. If α̂1 and α̂2 are two operators such that
〈χ1| α̂1 |χ2〉 = 〈χ1| α̂2 |χ2〉 for all vectors |χ1〉 and
|χ2〉 then α̂1 = α̂2.

Proof. Suppose not; then by Definition 7 there exists
a |χ2〉 such that α̂1 |χ2〉 6= α̂2 |χ2〉. Therefore,

(α̂1 − α̂2) |χ2〉 6= 0

So choose |χ1〉 = (α̂1 − α̂2) |χ2〉. Then we have

0 6= 〈χ1| χ1〉 = 〈χ1| α̂1 − α̂2 |χ2〉

= 〈χ1| α̂1 |χ2〉 − 〈χ1| α̂2 |χ2〉

But this difference has to be zero by the hypothesis,
so we have a contradiction. Therefore α̂1 = α̂2.

Lemma 3. Let α̂1 and α̂2 be any two operators. If
〈χ| α̂1 = 〈χ| α̂2 for all vectors |χ〉, then α̂1 = α̂2.

Proof. Let |χ′〉 be an arbitrary vector. If

〈χ| α̂1 = 〈χ| α̂2

for all vectors |χ〉, then by multiplying both sides to
the right by |χ′〉 we find that〈

χ
∣∣ α̂1

∣∣χ′〉 =
〈
χ
∣∣ α̂2

∣∣χ′〉
for all vectors |χ〉 and |χ′〉. So by Lemma 2, α̂1 =
α̂2.

Lemma 4. Let α̂ be any operator and let c be a
constant. Then (cα̂)† = c∗α̂†.

Proof. Let |χ〉 be an arbitrary vector. Then

〈χ| (cα̂)† D10= (cα̂ |χ〉)†

D2= (cα̂ |χ〉)T∗ = c∗ (α̂ |χ〉)T∗

D2= c∗ (α̂ |χ〉)† D10= 〈χ| (c∗α̂†)

Therefore, by Lemma 3, (cα̂)† = c∗α̂†.

Lemma 5. Let α̂1 and α̂2 be any two operators.
Then (α̂1 + α̂2)† = α̂†1 + α̂†2.

Proof. Let |χ〉 be an arbitrary vector. Then

〈χ| (α̂1 + α̂2)† D10= ((α̂1 + α̂2) |χ〉)†

D8= (α̂1 |χ〉+ α̂2 |χ〉)†
D2= (α̂1 |χ〉+ α̂2 |χ〉)T∗

= (α̂1 |χ〉)T∗ + (α̂2 |χ〉)T∗
D2= (α̂1 |χ〉)† + (α̂2 |χ〉)†

D10= 〈χ|α†1 + 〈χ|α†2
D8= 〈χ| (α̂†1 + α̂†2)

So by Lemma 3, (α̂1 + α̂2)† = α̂†1 + α̂†2.

Lemma 6. For all operators α̂, (α̂†)† = α̂.



Proof. Let |χ′2〉 = α̂ |χ2〉.

(〈χ1| α̂ |χ2〉)∗ =
(〈
χ1

∣∣ χ′2〉)∗
L1=
〈
χ′2
∣∣ χ1

〉 D2=
∣∣χ′2〉† |χ1〉

= (α̂ |χ2〉)† |χ1〉
D10=

〈
χ2

∣∣∣ α̂† ∣∣∣χ1

〉
Let |χ′1〉 = α̂† |χ1〉 and take the complex conjugate
of both ends,

〈χ1| α̂ |χ2〉 =
(〈
χ2

∣∣∣ α̂† ∣∣∣χ1

〉)∗
=
(〈
χ2

∣∣ χ′1〉)∗
L1=
〈
χ′1
∣∣ χ2

〉 D2=
∣∣χ′1〉† |χ2〉

= (α̂† |χ1〉)† |χ2〉
D10=

〈
χ1

∣∣∣ (α̂†)† ∣∣∣χ2

〉
So by Lemma 2, (α̂†)† = α̂.

Lemma 7. Let α̂1 and α̂2 be any two operators.
Then (α̂1α̂2)† = α̂†2α̂

†
1.

Proof. Let |χ〉 be an arbitrary vector.

〈χ| (α̂1α̂2)† D10= ((α̂1α̂2) |χ〉)†

= (α̂1 (α̂2 |χ〉))†
D10= (α̂2 |χ〉)† α̂†1

D10= 〈χ| α̂†2α̂
†
1

Therefore, by Lemma 3, (α̂1α̂2)† = α̂†2α̂
†
1.

Lemma 8. If â is a Hermitian operator, then
〈ψ| â |ψ〉 is real for all vectors |ψ〉.

Proof. Let |ψ′〉 = â |ψ〉.

(〈ψ| â |ψ〉)∗ =
(〈
ψ
∣∣ ψ′〉)∗ L1=

〈
ψ′
∣∣ ψ〉

D2=
∣∣ψ′〉† |ψ〉 = (â |ψ〉)† |ψ〉 D10=

〈
ψ
∣∣∣ â† ∣∣∣ψ〉 D11= 〈ψ| â |ψ〉

Lemma 9. If â1 and â2 are Hermitian operators
that satisfy 〈ψ| â1 |ψ〉 = 〈ψ| â2 |ψ〉 for all states |ψ〉,
then â1 = â2.

Proof. Let η̂ = â1 − â2. Then η̂ is a Hermitian op-
erator that satisfies

〈χ| η̂ |χ〉 = 〈χ| â1 |χ〉 − 〈χ| â2 |χ〉 = 0

for all vectors |χ〉. Now any Hermitian operator can
be diagonalized by a unitary matrix (proof omit-
ted), so there exists a unitary matrix Û such that
η̂′ = Û−1η̂Û = Û †η̂Û is a diagonal matrix. Consider
the matrix elements of η̂′,〈

χ
∣∣ η̂′ ∣∣χ〉 =

〈
χ
∣∣∣ Û †η̂Û ∣∣∣χ〉 =

〈
χ′
∣∣ η̂ ∣∣χ′〉 = 0

where |χ′〉 = Û |χ〉. By letting |χ〉 run over all ba-
sis vectors, we obtain a set of equations showing that
each element on the diagonal of η̂′ must be zero. But
η̂′ is diagonal, so η̂′ = 0. Therefore, η̂ = Û η̂′Û−1 = 0,
which means â1 = â2.

Lemma 10. If â1 and â2 are Hermitian operators,
then i[â1, â2] is also a Hermitian operator.

Proof.
(i[â1, â2])† L4= −i ([â1, â2])†

D13= −i (â1â2 − â2â1)†

L5= −i
(

(â1â2)† − (â2â1)†
)

L7= −i (â2â1 − â1â2) D13= i[â1, â2]

Lemma 11. Let α̂0, α̂1, and α̂2 be any operators.
Then [α̂0, c1α̂1 + c2α̂2] = c1[α̂0, α̂1] + c2[α̂0, α̂2].

Proof.

[α̂0, c1α̂1+c2α̂2] D13= α̂0(c1α̂1+c2α̂2)−(c1α̂1+c2α̂2)α̂0

D8= c1α̂0α̂1 + c2α̂0α̂2 − c1α̂1α̂0 − c2α̂2α̂0

D13= c1[α̂0, α̂1] + c2[α̂0, α̂2]

Lemma 12. Let Â, B̂, and Ĉ be any operators.
Then [[Â, B̂], Ĉ] + [[B̂, Ĉ], Â] + [[Ĉ, Â], B̂] = 0

Proof.

[[Â, B̂], Ĉ] + [[B̂, Ĉ], Â] + [[Ĉ, Â], B̂]

D13= [ÂB̂ − B̂Â, Ĉ] + [B̂Ĉ − ĈB̂, Â] + [ĈÂ− ÂĈ, B̂]

D13= (ÂB̂ − B̂Â)Ĉ − Ĉ(ÂB̂ − B̂Â)

+(B̂Ĉ − ĈB̂)Â− Â(B̂Ĉ − ĈB̂)

+(ĈÂ− ÂĈ)B̂ − B̂(ĈÂ− ÂĈ)

D8= ÂB̂Ĉ − B̂ÂĈ − ĈÂB̂ + ĈB̂Â

+B̂ĈÂ− ĈB̂Â− ÂB̂Ĉ + ÂĈB̂

+ĈÂB̂ − ÂĈB̂ − B̂ĈÂ+ B̂ÂĈ

= 0

Lemma 13. Let Â, B̂, and Ĉ be any operators.
Then [Â, B̂Ĉ] = [Â, B̂]Ĉ + B̂[Â, Ĉ]



Proof.
[Â, B̂]Ĉ + B̂[Â, Ĉ]

D13= (ÂB̂ − B̂Â)Ĉ + B̂(ÂĈ − ĈÂ)

D8= ÂB̂Ĉ − B̂ÂĈ + B̂ÂĈ − B̂ĈÂ

= ÂB̂Ĉ − B̂ĈÂ D13= [Â, B̂Ĉ]

Lemma 14. If â1 and â2 are operators that sat-
isfy [â1, â2] = c for some constant c, then [â1, â

k
2] =

ckâk−1
2 for all integers k ≥ 1.

Proof. We procede by induction on k. For the base
case, k = 1, we have [â1, â2] = c, which is true by
the assumption of the theorem. Now assume that
the result holds for k = N − 1. Then for k = N we
have

[â1, â
N
2 ] = [â1, â2â

N−1
2 ] L13= [â1, â2]âN−1

2 +â2[â1, â
N−1
2 ]

Now using the inductive hypothesis,

= câN−1
2 + â2

(
c(N − 1)âN−2

2

)
= cNâN−1

2

So the theorem holds for k = N and the induction
is complete.

Lemma 15. If â1 and â2 are operators that satisfy
[â1, â2] = c for some constant c and f(x) is an ana-
lytic function, then [â1, f(â2)] = cf ′(â2).

Proof. Since f(x) is an analytic function, we can
write

f(x) =
∞∑
k=0

f (k)(0)xk

where f (k)(0) = dkf(x)
dx

∣∣∣
x=0

. Therefore

[â1, f(â2)] =

[
â1,

∞∑
k=0

f (k)(0)âk2

]

L11=
∞∑
k=0

f (k)(0)[â1, â
k
2] L14= c

∞∑
k=0

f (k)(0)kâk−1
2

Now,

f ′(x) =
d

dx

∞∑
k=0

f (k)(0)xk =
∞∑
k=0

f (k)(0)kxk−1

Multiplying by c and replacing x with â2 we get the
same result, so [â1, f(â2)] = cf ′(â2).

Lemma 16. If â1 and â2 are operators that satisfy
[â1, â2] = c where c is a constant, then any analytic
function f(â1, â2) can be expanded in a power series
as f(â1, â2) =

∑∞
k=0 fk(â1)âk2 for some functions fk.

Proof. Since f(â1, â2) is analytic, it can be expressed
as a series expansion, but the terms do not necessar-
ily have all the â2 operators on the right-hand end.
It remains to show that any term made up of a prod-
uct of â1 and â2 operators can be expressed as a sum
of terms with all â2 operators at the right-hand end.
We proceed by induction on the number of â1 and
â2 operators in the term. The base case n = 0 is
true by setting f0 appropriately. Now assume the
inductive hypothesis holds for all n up to N . Let
â(N) represent an arbitrary term containing N op-
erators. Then any term with N + 1 operators can
be written as â(N)â1 or â(N)â2. By the inductive
hypothesis, we can write â(N) in the required form,
so the second case is done because it just adds an
extra â2 to the end of each term. As for the first
case, if â(N) contains no instances of â2, then we are
done. If it does contain an instance of â2, we can
assume it is at the end by the inductive hypothesis:
â(N−1)â2â1 = â(N−1)(â1â2 − c). Now â(N−1)â1 can
be re-written in the proper form by the inductive
hypothesis so the first term is in the desired form
and the second term is too, so all cases have been
shown.

6 Bonus Lemmas

Lemma 17. If for all states |ψ〉, |ψ〉 is an eigenstate
of the linear operator α̂, then α̂ ∝ Î.

Proof. Consider two orthogonal states |ψ1〉 and |ψ2〉.
Let their α̂ eigenvalues be α1 and α2 respectively.
Now 1√

2
(|ψ1〉 + |ψ2〉) must also be an eigenstate, so

there is a constant α0 such that
1√
2
α0 (|ψ1〉+ |ψ2〉)

D14=
1√
2
α̂ (|ψ1〉+ |ψ2〉)

D9=
1√
2

(α̂ |ψ1〉+ α̂ |ψ2〉) =
1√
2

(α1 |ψ1〉+ α2 |ψ2〉)

Multiplying by 〈ψ1| to the left we get α0 = α1. Mul-
tiplying by 〈ψ2| to the left we get α0 = α2. Therefore
α1 = α2 for any pair of orthogonal states. Now let
|ψ1〉 and |ψ2〉 be any two states, not necessarily or-
thogonal. Define

|φ〉 = |ψ2〉 − 〈ψ1| ψ2〉 |ψ1〉

Then 〈ψ1| φ〉 = 〈ψ1| ψ2〉−〈ψ1| ψ2〉 = 0, which means
that |φ〉 and |ψ1〉 are orthogonal. So by what was



just shown, |φ〉 and |ψ1〉 must have the same α̂ eigen-
value, say α1. Then

α̂ |ψ2〉 = α̂(〈ψ1| ψ2〉 |ψ1〉+ |φ〉)
D9= 〈ψ1| ψ2〉 α̂ |ψ1〉+ α̂ |φ〉

= 〈ψ1| ψ2〉α1 |ψ1〉+ α1 |φ〉 = α1 |ψ2〉
Therefore |ψ1〉 and |ψ2〉 have the same α̂ eigenvalue.
Since |ψ1〉 and |ψ2〉 were arbitrary, this means that
all states have the same eigenvalue, say c. Then

α̂ |ψ〉 = c |ψ〉

Therefore by Definition 7, α̂ = cÎ, which means
α̂ ∝ Î.

Lemma 18. All eigenvalues of Hermitian operators
are real.

Proof. Let â be a Hermitian operator and let |a〉
be an eigenvector of â with eigenvalue a so that
â |a〉 = a |a〉. Taking the Hermitian conjugate and
using Definitions 10 and 2, 〈a| â† = 〈a| a∗.

a = 〈a| â |a〉 D11=
〈
a
∣∣∣ â† ∣∣∣a〉 = a∗

which shows that a is real.

Lemma 19. A transformation Û on states preserves
the length of all vectors if an only if the transforma-
tion is unitary, i.e. Û † = Û−1.

Proof. Assume Û preserves the length of all vectors,
so

|Û |χ〉 |2 = | |χ〉 |2

By Definition 5,〈
χ
∣∣∣ Û †Û ∣∣∣χ〉 =

〈
χ
∣∣∣ Î ∣∣∣χ〉

The operator (Û †Û) is Hermitian because (Û †Û)† L7=
Û †Û ††

L6= Û †Û . So by Lemma 9,

Û †Û = Î

which proves the forward implication. Now assume
Û is unitary. Then for any state |χ〉,

|Û |χ〉 |2 D5=
〈
χ
∣∣∣ Û †Û ∣∣∣χ〉 D12=

〈
χ
∣∣∣ Î ∣∣∣χ〉 D5= | |χ〉 |2

Since norms are always positive, taking the square
root of both ends proves the reverse implication.


