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1 Introduction

This paper derives the Schrodinger equation in one-
dimension from axioms based on probabilistic mea-
surements and constraints imposed by classical ex-
pectations. The Lemmas found in the appendix are
segregated based on the fact that they are purely
mathematical and do not depend on any of the ax-
ioms presented below. Definitions can be found in
a separate appendix. Where appropriate, the equal
sign in an equation has been labelled with the num-
ber of the primary theorem (T), lemma (L), or defini-
tion (D) used. This paper also introduces a special
notation to indicate the results of a measurement.
The non-deterministic operator M; represents the
effect of the measurement of the quantity a on a
state, which is to collapse the state to an eigen-
state of a. The non-deterministic function MZ(|1)))
represents the value obtained by a measurement of
the quantity a. In both cases, the star denotes the
fz}ct that thgese expressions are non-deterministic so
NIE|6) # Mg 1) and ME([)) # ME(|¢)) in gen-

eral.

2 Axioms

Axiom 1. For all observables a and all states |v)),
measurement of the quantity a on state |1) results in
a transformation to the state M; YY) = |a) for some
eigenstate |a) of a.

Axiom 2. For all observables a and all states |v),
the probability of obtaining a measured value of a
upon measurement of the quantity a on state |¢) is
given by P[MZ(|¢)) = a] = | (¢| a) |?, where |a) is
an eigenstate of a with eigenvalue a.

Axiom 3. There exist observables & and p, with
no explicit time dependence, that satisfy %@W =
(D)y/m and %@W = —(V'(&))y where m is a con-
stant and V' is an arbitrary function. We call these
observables the position and momentum respectively.

Axiom 4. There exists an analytic operator-valued
function of time duration 7(5t) = 7(&,p,0t) such
that for all states [1(t)), 7(5t) |¢(t)) = |¢(t+ dt)).
We call this operator-valued function the time-
evolution operator (which is a slight abuse of nomen-
clature).
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Axiom 5. All non-trivial operators that are con-
served for all choices of V' can be written as a func-
tion of a single conserved operator. We call this op-
erator the Hamiltonian.

3 Theorems

Theorem 1. Let a be an observable and |a) be an
eigenstate of a with eigenvalue a. Then MZ(|a)) = a.

Proof.
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a

a)) = a

So the probability of the consequent being true is
one, which completes the proof. O

Theorem 2. Let a be an observable and let |a1) and
lag) be eigenstates of a with eigenvalues a; and asg
respectively. Then (a1| a2) = daya,-

Proof.
| {ar] az) [2 22 P[MZ(Jar) = as]

T1
= Pla; = a2] = dayay

O]

Theorem 3. Let a be an observable. Then
doala)(al = I, where |a) is any eigenstate of a
with eigenvalue a (such an eigenstate may be non-
unique).

Proof. Consider an arbitrary state |¢)) and an arbi-
trary vector in the span of eigenstates of a, |¢,) =

Y aCala). Let 1) = 1) — |tby). Taking the inner
product with |a’),

(@] ) = (] ) = X ca{a| a)

1;2 al} ¢> - an5a’a = <a/‘ ¢> — Ca/

Let the constants ¢, be defined by ¢, = (a| ¥) so
that (a| ¢») = 0 for all |a). Then

(Wl ¥) = (Z (d| i+ <wrr> (Z Cala) + |¢r>>

a/



- Z Zczlca <al| a> + (U] ¥r) Proof.
=220 clreabua+ (el ) :
= Z |Ca‘2 %\ wr> a

—Zla!wP (Wr] Y0 ’

A2
:ZP[ = a] + (¢r| ¥r) Do
D20 Z -
= PHaMd |w> | = a] + <wr’ wr> T3
a = <¢‘ a |¢>
O
ZP + (Y] r)
Theorem 6. There exists a Hermitian operator
H = H(z,p), where H is analytic, and a real con-
= ZP + (r| tr) stant h such that for all states [¢), H|¢(t)) =
ind [(t)).
=1+ Wr ¥r) Proof. By Axiom 4, there exists an analytic
But by since [1)) is a state, (1] %) = 1, so (] ¥,) = operator-valued function 7(dt) such that
0. This can only be true if |¢),) = 0 by the definition #(50) [ (8)) = [W(t + 6t)

of an inner product. Therefore,
for all states |1(t)) where dt is any duration of time.
If we let §t = dt, where dt is an infinitesimal dura-
= [Ya) = Z @) {al ) = (Z ) <a|> [+) tion of time and expand 7(dt) as a power series in dt
(which works because 7(dt) is analytic), we obtain

So by Definition 7, 3, |a) (af = I. = Hdt) = e+ érdt + eadt® + - = Go + Erdt

Theorem 4. Let &y and &g be linear operators. If where terms of order dt? have been dropped because
a1 la) = Gz la) for all eigenstates |a) of some observ-  dt is infinitesimal. In the limit dt — 0, we have

able a, then &1 = Qs.
7(0) [p(2)) = [¥(2))

So 7(0) is the identity operator on states, which im-
T3 . plies that ¢y = I. The norms of states are unity at
G |$) = Z ) (al ) all times, so

Proof. For any state |¢)) we have

295 i o) ol ) = 3" ) el W) D)) B (Wt + dt)] P(t + db))
= aq |a) (a = a9 |a) (a
‘ a = (0 (0)| (7 + &) (7 + evar) ()

2603 la) (al v) 2 az ) = (wo| T+ @ + e wio))
()

By Definition 7, &1 = . m = (@(t)] w(t) +dt (v e + &

) Therefore
Theorem 5. For all observables a and all states 1),

(@)y = (¥ @) <¢(t>)e{ o ‘¢(t)> —0
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Since ¢; + ¢ is Hermitian, by Lemma 9 we have
éi +¢é¢;1=0or éJ{ = —¢1. Define H = th¢1, where h is

an unspecified real constant. Then H is a Hermitian
operator because at = —ihé; = ih¢; = H. So we
have

F(dt) =1 —iHdt/h

for some Hermitian operator H. Now by Axiom 4,
7(dt) = 7(z, p,dt), and H is a constant with respect
to time, so H = H(z,p). Since 7 is analytic, H must
be also. Now we can write down an expression for
the time derivative of states.

b (t + dt)) — (1))
= |w< ) = lim, 2
aa D) [0(0) = ()
dt—0 dt
o (i) [p(0) = (1)
dt—0 dt
Lo R HdE (D)
dt—0 dt
= —CH[$(t)

Therefore H |i)(t)) =
operator H = H(%, A) and some real constant h. [

h d |4)(t)) for some Hermitian

Theorem 7. For all linear operators @ and for all
states [(1)), g(a)y = (& H])y + (Gi)y.

Proof.
75 d

2@ = S (W] afp())
foJe

_ (dt <¢(t)\> & [yh(t)) + <¢(t) ot

v(0)
+wiola (g )

Taking the Hermitian conjugate of the equation in
Theorem 6 we obtain (¢ (t)| H = —ih% ((t)], so

s _% <¢)(t)‘ Ha w(t)> + <¢(t) % w(t)>
(vt aft foi)
E % <¢(t)) aH — Ha ¢(t)> + <¢(t) %? ¢(t)>

Theorem 8. [& H] = H =

—ihV'(#).

ihp/m and [p,

Proof. By Axiom 3, there exist observables & and p,
with no explicit time-dependence, that satisfy

d,. .

T @)y = (pho/m
and p

& o) = V(@)
for all states |1). By Theorem 7, we can write
— i, H])y = (B
and i
—lp, H])y = (V@)

Observables and functions of observables are Hermi-
tian, so the right hand side operators are Hermitian.
By Lemma 10, the left hand side operators are Her-
mitian. So by Lemma 9,

&, H] = ihp/m
and
[p, H) = —ihV' ()
O
Theorem 9. For all states |v), %(i[i‘,ﬁ]m =0.
Proof.
d 1 .
28,8 = (3], H))y
1 R R
L p ). 3] + (1, ), )y
I {[ihV(8), 4]+ [ihpfm, )y 20
U

Theorem 10. There exists a real constant h such
that [&,p] = ih.

Proof. By Theorem 9,

& ile. b
And by Lemma 10, i[Z, p] is Hermitian, which means
i[Z, p] is a conserved quantity. But by Theorem 7, H
is also a conserved quantity. So by Axiom 5, we have
three possibilities: ¢[Z,p] can be written as a func-
tion of H, H can be written as a function of iz, p], or
one of these two operators is trivial. By Theorem 8,
we see that H must depend on V, while i[Z, p] does
not, so H cannot be written as a function of i[&, p).

=0



It remains to show that i[z,p] cannot be written as
a function of H [MISSING STEPS]. Therefore one
must be trivial. If H was trivial, then by Theorem 8,
p would be zero. This contradicts Axiom 3 because
the zero operator does not satisfy the definition of
an observable, so H cannot be trivial. Therefore,
i[Z, p] is a trivial conserved operator, so we can write
i[#,p] = —hI for some constant fi. Since i[Z,p] is
Hermitian, by Lemma 8, A~ must be real. Previously,
the value of A was undetermined, but now we use
this commutator to define its magnitude. Multiply-
ing both sides by —i we obtain [Z,p| = ih for some
real constant h. O

Theorem 11. For all states [), ihs |[¢(t)) =
(& + V@) ).

Proof. By Theorem 6, H = H (z,p) for some ana-
lytic function H, and by Theorem 10, [%,p] = ik, so
by Lemma 16 we can write,

H = H(,p) = Ho(2) + Hy(2)p + Ha(2)p* + - -

By Theorem 8,

Therefore, Hy(%) = 5= while all other Hy(%#) are

zero except perhaps Hy(Z) because it is multiplied
by k = 0. So H = Hy(Z) + p?/2m. Again using
Theorem 8,

—ihV'(2) B [p, H] = [p, Ho(2)]

By Lemma 15, Ho(z) = V (&), so

So by Theorem 6, ifik [(t)) = (£ + V(2)) [v (1))
for all states [1)). O

4 Appendix: Definitions

Definition 1. A vector |x) is an element of a Hilbert
space.

Definition 2. The Hermitian conjugate of a vector,
denoted | X>T, is the complex conjugate of its trans-
pose i.e. |x)T = [x)7*. For aesthetics we write this
as (x].

Definition 3. The inner product of two vectors |x1)
and |x2) is the matrix product (x1||x2). For aesthet-
ics we write this as (x1| x2). We omit the proof that
this satisfies the mathematical axioms for an inner
product.

Definition 4. Two vectors |x1) and |x2) are orthog-
onal if and only if (x1| x2) = 0.

Definition 5. The norm of a vector, ||x)|, is
V(x| x). We omit the proof that this satisfies the

mathematical axioms for a norm.

Definition 6. An operator & is a mapping from vec-
tors to vectors.

Definition 7. Two operators &; and &s are equal
if and only if &; |x) = @2 |x) for all vectors |x).

Definition 8. The sum/difference of two operators
&1 and o, written &y + Go or &1 — Go, is the oper-
ator defined by (&1 £+ &2) |x) = d1 |x) £ &2 |x), for
any vector |x).

Definition 9. A linear operator & is an operator
that satisfies &(c1 |x1)+c2|x2)) = c1d|x1) +c2d | x2)
for all vectors |x1) and |x2) and all constants ¢; and
Co.

Definition 10. The Hermitian conjugate of an op-
erator &, written &', is the operator that satisfies

(@) = (xlat.
Definition 11. An operator & is Hermitian if and
only if & is a linear operator and &' = a.

Definition 12. An operator & is unitary if and only
if & is a linear operator and &fé = 1.

Definition 13. The commutator of two operators
A1 and Qog, written [éq, Go], is the operator dyde —
Qodiy.

Definition 14. An eigenvector of an operator &,

written |a), is a vector that satisfies & |a) = aa),
where « is a constant.

Definition 15. The eigenvalue of an eigenvector
|a) of an operator & is the constant « that satisfies
ala) = ala).



Definition 16. An observable a is a Hermitian op-
erator such that all states are in the span of any set
of vectors containing at least one eigenvector of a for
every distinct eigenvalue of a.

Definition 17. A state |¢(t)) is a time-dependent
vector with unit norm (¥ (¢)| ¥(t)) = 1 at all times.
When time is not important we write |¢(t)) as |1)),
even though the time dependence is still there.

Definition 18. An ecigenstate of operator & is a
state that is an eigenvector of .

Definition 19. A measurement corresponding to
observable a, written ]\Z[;, is a non-deterministic
pseudo-operator taking states to states in a prob-
abilistic manner.

Definition 20. A measured value a correspond-
ing to the observable & for a particular measure-
ment is the eigenvalue of the eigenvector returned
by that measurement, which can be expressed as

Mz (1)) = ladg 1) |-

Definition 21. The expectation value of observable
a in state |¢), (a)y is the probability-weighted sum
of all possible measured values of a. That is

@)y =) aP[M(

¥)) = dl

Definition 22. A conserved operator is a Hermitian
operator a that satisfies 2 (a),, = 0 for all states |1)).
A conserved operator is called non-trivial if it is non-
zero and not proportional to the identity operator.

5 Appendix: Lemmas

Lemma 1. For any two wvectors |x1) and |x2),
((xal x2)™ = (xal x1)-

Proof. For any vectors |x1) and |x2), it is always true
that |x1)” [x2) = |x2)” |x1) based on the definition
of vectors. Therefore,

(alx2) 2 () 1)) 2 )" )

= (27 ) Z ) ) Z (el xa)
]

Lemma 2. If &1 and &g are two operators such that

(x1] &1 |x2) = (x1|éalx2) for all vectors |x1) and
Ix2) then &1 = Ga.

Proof. Suppose not; then by Definition 7 there exists
a |x2) such that &1 |x2) # &2 |x2). Therefore,

(1 — G2) [x2) # 0

So choose |x1) = (&1 — é2) |x2). Then we have
07 (xal x1) = (xalda — da[x2)

= (xal a1 [x2) — (x1] é2 |x2)

But this difference has to be zero by the hypothesis,
so we have a contradiction. Therefore & = Go. O

Lemma 3. Let &1 and &g be any two operators. If
(x| &1 = (x| &a for all vectors |x), then &1 = Go.

Proof. Let |x') be an arbitrary vector. If
(xla1 = (x| a2

for all vectors |x), then by multiplying both sides to
the right by |x’) we find that

(x| a1 [x) = (x] &2 X

for all vectors |x) and |x’). So by Lemma 2, a3 =
Q. O

Lemma 4. Let & be any operator and let ¢ be a
constant. Then (ca)l = c*af.

Proof. Let |x) be an arbitrary vector. Then

D10
T:(

(x| (c&) cév[x))!

D2 , . * % /A *
= (calx)"™ = (alx)"
D2 4, . D10 A
= (@)= (xl (eral)
Therefore, by Lemma 3, (ca)f = ¢*af. O

Lemma 5. Let &1 and &g be any two operators.
Then, (61 + ag)T = al +al.

Proof. Let |x) be an arbitrary vector. Then

J[DO

(x| (&1 + a2)T =" (&1 + a2) |x)T

D8 , . N ~ *
= (G |x) + a2 X)) LX) + da [x)"

= (a1 X)) + (2 h))™ = (@1 )"+ (G2 )

D10 8
= (x|l + (x| o} =

D2 , .
= (
2

So by Lemma 3, (4; + ag)' = & + al. O

Lemma 6. For all operators &, (&1)T = a.



Proof. Let |x5) = &|x2)-

= ((al x2))”
S 0h] ) 2 ) )
= (a|x2)" [x1) 110 <X2) af ‘X1>

Let |x}) = &' |x1) and take the complex conjugate
of both ends,

(xil @ x2) = (<x2( at ‘X1>)* _

= (il xe) Z X)) )
= @ )t he) 2 (| @1 |x2)

So by Lemma 2, (&f)t = a. O

((xalér[x2))®

((x2| X4))"

Lemma 7. Let &; and &g be any two operators.

Then (6165)" = alal.

Proof. Let |x) be an arbitrary vector.

(x| (G1d2)" 2 ((G1a2) [x)'

Lemma 8. If a is a Hermitian operator, then

(| aly) is real for all vectors |1)).

Proof. Let [¢') = a|y).
(Wlalw)™ = ((¢] )" = (W] )
Z |0 p) = @' 1) 2 (v|at[v) 2 wlaly)
O

Lemma 9. If a1 and as are Hermitian operators

that satisfy (Y| a1 |v) = (Y| az|v) for all states |1),

then dl = &2.

Proof. Let 1 = a1 — as. Then 7 is a Hermitian op-
erator that satisfies
(xlaz|x)=0

Xl lx) = (xla|x) -

for all vectors |x). Now any Hermitian operator can
be diagonalized by a unitary matrix (proof omit-
ted) so there exists a unitary matrix U such that
if = U190 = UTHU is a diagonal matrix. Consider
the matrix elements of 7',

([0 ) =

x| |x) = Xalx) =

where |x') = U |x). By letting |x) run over all ba-
sis vectors, we obtain a set of equations showing that
each element on the diagonal of 7/ must be zero. But
7 is diagonal, so #’ = 0. Therefore, n = Uf'U~! = 0,
which means a1 = as. O

Lemma 10. If a1 and as are Hermitian operators,
then i[ay, ag) is also a Hermitian operator.

Proof.
—i ([a1, a2))"
T

(ifar, a2))T &
L3 i (ayag — doan)
L ((dldz)T — (dQ&I)T>

LT i (apy — anin) 2% i[ay, o)

0

Lemma 11. Let &g, &1, and Go be any operators.
Then [do, c1Gq + ngg] =1 [do, dl] + CQ[do, dg].

Proof.
N ~ ~ D13 . ~ ~ ~ ~ N
[Oz(), cla1+02ag] = a0(01a1+02a2)—(clal—i-cQag)ag

D8 . . A A SN
= 10001 + c2lprg — 1 g — Catia(g

2 ¢ 4o, du] + caldo, do)
O
Lemma 12. Let A 3, aAn dC b e _any operators.
Then [[A, B],C] +[[B,C], A] + [[C, A], B] = 0
Proof.

2 ABC — BAC — CAB + CBA
+BCA—-CBA—- ABC + ACB
+CAB ~ ACB —~ BCA+ BAC
=0
O]
Lemma 13. Let /AlA B, a@d ACA’A be any operators
Then [A, BC] = [A, B]C + B[A, C]



Proof.

d

Lemma 14. If a; and a2 are operators that sat-
isfy [a1,as] = c for some constant c, then [ay,ak] =
ck:dg*l for all integers k > 1.

Proof. We procede by induction on k. For the base
case, k = 1, we have [a1,a2] = ¢, which is true by
the assumption of the theorem. Now assume that
the result holds for Kk = N — 1. Then for k = N we
have

~ oA A~ A~ ~N—17L13 . . 7AN-— A [~  AN—
[a1,68'] = [a1, d2ay '] = [an, a2)ay ' Haslar, ay ]

Now using the inductive hypothesis,
=cad '+ ay (c(N — 1)&5‘2) =cNa) ™1

So the theorem holds for ¥ = N and the induction
is complete. O

Lemma 15. If a1 and a2 are operators that satisfy
[a1,a2] = ¢ for some constant ¢ and f(x) is an ana-
lytic function, then [a1, f(az2)] = cf’(az).

Proof. Since f(z) is an analytic function, we can
write

fle)=>" f®(0)z*

k=0

where f*)(0) =

% . Therefore

= S WOt = 3 r Okt

k=0

Multiplying by ¢ and replacing x with as we get the
same result, so [a, f(a2)] = cf'(az). O

Lemma 16. If a1 and as are operators that satisfy
[a1,G2) = ¢ where ¢ is a constant, then any analytic
function f(a1,az2) can be expanded in a power series
as f(ai,a2) = oo g fe(a1)al for some functions fi.

Proof. Since f(ay, az) is analytic, it can be expressed
as a series expansion, but the terms do not necessar-
ily have all the ao operators on the right-hand end.
It remains to show that any term made up of a prod-
uct of a1 and ao operators can be expressed as a sum
of terms with all as operators at the right-hand end.
We proceed by induction on the number of a; and
a9 operators in the term. The base case n = 0 is
true by setting fo appropriately. Now assume the
inductive hypothesis holds for all n up to N. Let
a) represent an arbitrary term containing N op-
erators. Then any term with IV + 1 operators can
be written as &(N)&l or d(N)dg. By the inductive
hypothesis, we can write a®) in the required form,
so the second case is done because it just adds an
extra as to the end of each term. As for the first
case, if a¥) contains no instances of s, then we are
done. If it does contain an instance of as, we can
assume it is at the end by the inductive hypothesis:
aWN"Daga, = aV =V (a1as — ¢). Now aN"Ya; can
be re-written in the proper form by the inductive
hypothesis so the first term is in the desired form
and the second term is too, so all cases have been
shown. O

6 Bonus Lemmas

Lemma 17. If for all states |1), |¢) is an eigenstate

of the linear operator &, then & o I.

Proof. Consider two orthogonal states |¢)1) and |2).
Let their & eigenvalues be a; and as respectively.
Now %(Wn} + |12)) must also be an eigenstate, so
there is a constant ag such that
1
V2

Dy 1

= \ﬁ(@ [¥1) + dfiha)) =

pia 1

ao (|11) + [2) = 7

1
7 (o1 [¥1) + a2 [12))

Multiplying by (11] to the left we get ap = a1. Mul-
tiplying by (12| to the left we get ap = aa. Therefore
a1 = a9 for any pair of orthogonal states. Now let
|th1) and [1)9) be any two states, not necessarily or-
thogonal. Define

|9) = |2) — (1] ¥2) Y1)

Then (1] ¢) = (Y1] 12) — (1] ¥h2) = 0, which means
that |¢) and |11) are orthogonal. So by what was

a (|¢1) +[¥2))



just shown, |¢) and |11) must have the same & eigen-
value, say a;. Then

& |a) = a((¥1] ¥2) [11) +19))

2 (1| o) G [pr) + G |)
= (1] ¥2) a1 [ih1) + a1 |¢) = a1 [¢9)

Therefore |11) and |1)2) have the same & eigenvalue.
Since [11) and |¢)2) were arbitrary, this means that
all states have the same eigenvalue, say c. Then

aly) = cly)

Therefore by Definition 7, & = ol , which means
& o I O

Lemma 18. All eigenvalues of Hermitian operators
are real.

Proof. Let a be a Hermitian operator and let |a)
be an eigenvector of a with eigenvalue a so that
ala)y = ala). Taking the Hermitian conjugate and
using Definitions 10 and 2, (a|a = (a| a*.

a>:a*

which shows that a is real. O

a = {(alala) z <a al

Lemma 19. A transformation U on states preserves
the length of all vectors if an only if the transforma-
tion is unitary, i.e. Ul = U~

Proof. Assume U preserves the length of all vectors,
SO

TP =1x)

By Definition 5,

(x
1 L7

The operator (U10) is Hermitian because (UTU)T =
Utott 2 Ut So by Lemma 9,

o) = ()

Ulv =1

which proves the forward implication. Now assume
U is unitary. Then for any state |x),

D12 ~ D5
) 2 () 2 P

Since norms are always positive, taking the square
root of both ends proves the reverse implication. [

O E (x| 0T0




