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In this paper we will motivate and derive the quantum field theory of spinless particles in the absence
of interactions, starting from the assumptions of quantum mechanics. In the process we will “prove” the
existence of anti-particles, vacuum fluctuations, and the phenomenon of indistinguishability.

1 Introduction

1.1 Motivation

Why do we need quantum field theory? Quantum mechanics works just fine when we are modeling
a fixed number of particles, but it does not properly describe situations in which the number of particles
changes due to interactions.1 Take annihilation for example; it might at first seem that quantum mechanics
should suffice as long as we agree to set the particle wave functions to zero as soon as annihilation takes
place. However, this has a crucial flaw. Since there is uncertainty with respect to the positions of the
particles, there is also uncertainty as to whether the two particles have annihilated at any given time. It
is not just that we are unable to measure whether annihilation has occurred; there is actually no discrete
answer to the question. The reality is that the universe is in a superposition of states – in some annihilation
has occurred and in others it has not. Just as quantum mechanics has a wave function to store information
about the position of a particle, quantum field theory creates an object to store information about the
probabilities of each possible configuration of particle wave functions: the Schrodinger functional. This
strategy is known as second quantization because a probabilistic interpretation is being given to the wave
functions for observables rather than the observables themselves. The need for quantum field theory is
increased by the existence of vacuum fluctuations, which are spontaneous pair production and annihilation
events that are occurring everywhere at all times. Even when a physical process contains no apparent
change in the numbers of particles, these vacuum fluctuations can affect the measurable outcome.2

In order to define the Schrodinger functional, we must first define the particle field φ(x, t). The particle
field encodes all the information about the particles in the universe that belong to a specific indistinguisha-
bility class. An indistinguishability class is simply a set of particles that are indistinguishable by their
intrinsic properties such as mass and charge. For example, all photons are in one indistinguishability class
and all electrons are in another. The method of encoding the wave functions in φ(x, t) is simple; φ(x, t) is
just a combined wave function equal to the sum of the wave functions of all the particles, including vacuum
fluctuations, in the indistinguishability class it refers to. We suggest that φ(x, t) is the only physically
real wave function whereas the wave functions from quantum mechanics were just a natural simplification
for describing non-overlapping particles. Of course, the deficiencies of quantum mechanical wave functions
can be corrected by (anti-)symmetrization, but this is simply patchwork that results from using the wrong
fundamental wave function. Given this interpretation of φ(x, t), which we take to be an axiom of the the-
ory, the Schrodinger functional Ψ[φ] can be defined as the probability amplitude that the universe would
be measured to be in the state characterized by φ(x, t), assuming such a measurement could be made. It
is not practically possible to simultaneously take a position measurement of every electron in the universe,
but quantum mechanics does not forbid the possibility.

1Quantum mechanics can be used to model the creation and destruction of particles, but not properly; it neglects the
crucial flaw discussed below. See Peskin and Schroeder page 32 for an example.

2For example, consider the Casimir effect in which vacuum fluctuations cause an attractive force between two neutral
conducting plates.



1.2 Formulations of Quantum Field Theory

Before continuing with the development along these lines, we would like to discuss the other prevalent
formulations of quantum field theory for those readers who already have some familiarity with the subject.
There are three main formulations of quantum field theory: the canonical formulation, the Feynman formu-
lation, and the Schrodinger formulation.3 In this paper we will be developing the Schrodinger formulation,
but this is by far the least popular formulation in the literature. It is perhaps unfortunate because we
believe that it is the only choice that provides a clear picture of the underlaying concepts. Studying the
canonical or Feynman formulations without understanding the Schrodinger formulation is precisely analo-
gous to studying Lagrangian dynamics without understanding Newton’s laws. In both cases, some clever
mathematical manipulations serve to make computations much simpler, but at the same time obscure the
underlaying physics. But why do we even have three different formulations? Each formulation accom-
plishes the same thing using different mathematical tools. What they all accomplish is that they ensure
that the particle field φ obeys the proper field equation, which guarantees that particle wave functions
evolve according to the laws of quantum mechanics.

In this paper we will be assuming that the field equation is the Klein-Gordon equation since this is the
standard introductory example found in the textbooks. First we will derive the Klein-Gordon equation
from the Schrodinger equation.

Ĥ |φ(t)〉 = i~
∂

∂t
|φ(t)〉

Relativity states that the Hamiltonian for a free particle is Ĥ =
√

p̂2c2 +m2c4. If we insert this Hamilto-
nian into Schrodinger’s equation, we get√

p̂2c2 +m2c4 |φ(t)〉 = i~
∂

∂t
|φ(t)〉

There is no clean way to solve an equation with a differential operator inside a square root, but it is possible
to fix the problem by squaring the equation, or more rigorously, we apply Ĥ to both sides and use the fact
that ∂

∂t commutes with Ĥ because energy is conserved

(p̂2c2 +m2c4) |φ(t)〉 = i~
∂

∂t
Ĥ |φ(t)〉 = −~2 ∂

2

∂t2
|φ(t)〉

We now convert to the coordinate representation by applying 〈x| to the left. Then using 〈x| p̂ |φ(t)〉 =
−i~∇〈x| φ(t)〉 and 〈x| φ(t)〉 = φ(x, t),(

~2 ∂
2

∂t2
− ~2c2∇2 +m2c4

)
φ(x, t) = 0

And dividing by ~2c2 gives (
1
c2
∂2

∂t2
−∇2 +

m2c2

~2

)
φ(x, t) = 0

which is the Klein-Gordon equation.
We can now compare how each formulation accomplishes the task of making φ(x, t) be a solution to

the Klein-Gordon equation. The canonical formulation does this by treating φ(x, t) as an operator and
assuming that this operator is a solution to the field equation.(

1
c2
∂2

∂t2
−∇2 +

m2c2

~2

)
φ̂(x, t) = 0

This is used as the starting point for the derivation of the commonly used expression for φ̂(x, t), which for
real fields looks like (with ~ → 1 and c→ 1) 4

φ̂(x, t) =
∫

d3p

(2π)3
1√

2ω(p)
eip·x

(
â(p) + â†(−p)

)
3Cite paper where I found this.
4See Peskin and Schroeder equation (2.27).



From this point on, the canonical formulation only requires the use of commutation relations to retain the
effects of this derivation.

The Feynman formulation essentially enforces that φ(x, t) obey the Klein-Gordon equation by exploiting
the principle of least action with the Klein-Gordon Lagrangian. The Feynman rules, the cornerstone of
practical calculations in modern quantum field theory, have been derived in both the canonical and Feynman
formulations, but not in the Schrodinger formulation to our knowledge.5 The Schrodinger formulation
ensures that φ(x, t) obeys the Klein-Gordon equation by utilizing the functional Schrodinger equation,
which we will address in the next section.

2 Functional Schrodinger Equation

2.1 Klein-Gordon Hamiltonian

The Schrodinger equation governs the time evolution of quantum states.

Ĥ |ψ(t)〉 = i~
∂

∂t
|ψ(t)〉

The Schrodinger equation is not simply one choice for the dynamical evolution of states, it is the only
choice.6 The Schrodinger equation, up to a proportionality constant in the Hamiltonian, is a direct
consequence of the existence of a time-evolution operator in the operator-state formalism. The other
dynamical equations, such as the Klein-Gordon equation and the Dirac equation are special cases of the
Schrodinger equation. Furthermore, the Schrodinger equation is not a non-relativistic approximation, it is
only non-relativistic if a non-relativistic Hamiltonian is inserted. Confusions may arise because the term
“Schrodinger equation” is sometimes used to refer to a special case of the Schrodinger equation shown
above.

The main idea behind the Schrodinger formulation of quantum field theory is that the Schrodinger
equation enforces the field equation, similar to how in quantum mechanics it enforces Newton’s laws in
the classical limit. In both quantum mechanics and quantum field theory, Ehrenfest’s theorem is the
mathematical tool that demonstrates the consequences of the Schrodinger equation on the expectation
values of quantities. In order to see the effects of the Schrodinger equation, we must define states for it
to act upon. We define |Ψ〉 to be the state that contains the information in the Schrodinger functional.
To extract the Schrodinger functional from this state, we project onto the coordinate basis 〈φ| Ψ〉 = Ψ[φ],
where |φ〉 is defined to be an eigenstate of the coordinate operator, φ̂(x, t) |φ〉 = φ(x, t) |φ〉. All this is in
direct analogy to the case in quantum mechanics under the replacements x̂ ↔ φ̂, x ↔ φ, and ψ ↔ Ψ.
We are now quantizing the wave functions of quantum mechanics, hence the term second quantization.
The states used in second quantization are not equivalent to normal quantum mechanical states, there is
a different type of information being stored in them. First quantized states store information about the
probabilities of observing dynamical quantities, whereas second quantized states store information about
the probabilities for fields that determine the first quantized wave functions.

These states |Ψ〉 obey the Schrodinger equation. In order to ensure that the fields φ obey the Klein-
Gordon equation, we must be sure to choose the correct Hamiltonian for the Schrodinger equation. As
we will check in the next section, the proper choice is the Klein-Gordon Hamiltonian (See Appendix for
derivation). Therefore, the Schrodinger equation can be written as

ĤKG |Ψ(t)〉 = i~
∂

∂t
|Ψ(t)〉

where the Hamiltonian operator is given by
5See Peskin and Schroeder chapters 4 and 9, in particular page 275, which states that chapter 4 uses the canonical

formulation and chapter 9 uses the Feynman formulation (which they call the functional integral formulation).
6See Sakurai pages 69-72, or for a more explicit version, http://dfcd.net/articles/fieldtheory/schrodinger.pdf



ĤKG =
∫
d3x

(
2c2π̂π̂† +

1
2
(∇φ̂) · (∇φ̂†) +

1
2
m2c2

~2
φ̂φ̂†
)

By analogy with the position representation of the momentum operator in quantum mechanics p̂ .=
−i~ ∂

∂x , we express the Klein-Gordon Hamiltonian density in the coordinate basis by π̂(x, t) .= −i~ δ
δφ(x,t)

and π̂†(x, t) .= −i~ δ
δφ(x,t) .

ĤKG
.= −2~2c2

δ

δφ

δ

δφ∗
+

1
2
(∇φ) · (∇φ∗) +

1
2
m2c2

~2
φφ∗

In order that all terms in this expression have the same units, we deduce that the dimension of φ2 is energy
divided by length.

2.2 Ehrenfest Theorem

Now that we have the Klein-Gordon Hamiltonian we can show that if the functional Schrodinger equation
is satisfied, then Ehrenfest’s theorem implies that the field obeys the Klein-Gordon equation. So we start
by assuming

ĤKGΨ[φ, t] = i~
∂

∂t
Ψ[φ, t]

which gives us the Ehrenfest theorem

d

dt

〈
Â
〉

=

〈
∂Â

∂t

〉
+

1
i~

〈
[Â, Ĥ]

〉
Recall that the Ehrenfest theorem is derived in the Schrodinger picture, so the first term on the right
hand side is zero. 7 We will set Â→ π̂†(x′) .= −i~ δ

δφ∗(x′) , where the time coordinate is missing because it
appears in the state kets in the Schrodinger picture. Before we compute the commutator, it will be helpful
to prove a simple lemma. For any differential operator D̂ and any operator Â we have [D̂, Â] = D̂(Â)
because

[D̂, Â]ψ = (D̂Â− ÂD̂)ψ = D̂(Âψ)− Â(D̂ψ) = (D̂Â)ψ + Â(D̂ψ)− Â(D̂ψ) = (D̂Â)ψ

With this we compute the commutator in the coordinate representation.

[π̂†(x), ĤKG] .= −i~
∫
d3x′

[
δ

δφ∗(x)
, ĤKG(x′)

]
The first term drops because functional derivatives commute,

= −i~
∫
d3x′

{
1
2

[
δ

δφ∗(x)
,∇′φ(x′) ·∇′φ∗(x′)

]
+

1
2
m2c2

~2

[
δ

δφ∗(x)
, φ(x′)φ∗(x′)

]}
Now using the lemma,

= −i~
∫
d3x′

{
1
2
∇′φ(x′) ·∇′ δφ

∗(x′)
δφ∗(x)

+
1
2
m2c2

~2
φ(x′)

δφ∗(x′)
δφ∗(x)

}

= −i~
∫
d3x′

{
1
2
∇′φ(x′) ·∇′δ(x′ − x) +

1
2
m2c2

~2
φ(x′)δ(x′ − x)

}
7It is only nonzero in cases of explicit time dependence such as when you have a time-varying external electric field.



Using integration by parts in the first term,

= −i~
∫
d3x′

{
−1

2
(
∇′2φ(x′)

)
δ(x′ − x) +

1
2
m2c2

~2
φ(x′)δ(x′ − x)

}
= −i~

(
−1

2
∇2φ(x) +

1
2
m2c2

~2
φ(x)

)
Finally we plug this into the Ehrenfest theorem,

d

dt

〈
Ψ(t)

∣∣∣ π̂†(x)
∣∣∣Ψ(t)

〉
=

1
i~

〈
Ψ(t)

∣∣∣ [π̂†(x), ĤKG

] ∣∣∣Ψ(t)
〉

=
1
i~

〈
Ψ(t)

∣∣∣∣− i~
(
−1

2
∇2φ(x) +

1
2
m2c2

~2
φ(x)

) ∣∣∣∣Ψ(t)
〉

We must now switch back to the Heisenberg picture,

d

dt

〈
Ψ
∣∣∣ π̂†(x, t) ∣∣∣Ψ〉 =

〈
Ψ
∣∣∣∣ (1

2
∇2φ(x, t)− 1

2
m2c2

~2
φ(x, t)

) ∣∣∣∣Ψ〉
Using the expression obtained in the appendix π†(x, t) .= 1

2
1
c2
φ̇(x, t),

d

dt

〈
Ψ
∣∣∣∣ 12 1

c2
φ̇(x, t)

∣∣∣∣Ψ〉 =
〈

Ψ
∣∣∣∣ (1

2
∇2φ(x, t)− 1

2
m2c2

~2
φ(x, t)

) ∣∣∣∣Ψ〉〈
Ψ
∣∣∣∣ 12 1

c2
φ̈(x, t)− 1

2
∇2φ(x, t) +

1
2
m2c2

~2
φ(x, t)

∣∣∣∣Ψ〉 = 0

Multiplying both sides by a factor of 2 we get,〈
Ψ
∣∣∣∣ ( 1

c2
∂2

∂t2
−∇2 +

m2c2

~2

)
φ(x, t)

∣∣∣∣Ψ〉 = 0

Or since |Ψ〉 does not depend on space or time coordinates,(
1
c2
∂2

∂t2
−∇2 +

m2c2

~2

)〈
Ψ
∣∣∣ φ̂(x, t)

∣∣∣Ψ〉 = 0

where we have converted back to the operator representation from the coordinate representation using the
fact that φ̂(x, t) .= φ(x, t). This result means that the field φ obeys the Klein-Gordon equation in the
expectation value.

But in fact, the Klein Gordon equation is obeyed not only in the expectation value, but for any field
with a non-zero probability. If we define the Klein-Gordon operator,

Ô ≡ 1
c2
∂2

∂t2
−∇2 +

m2c2

~2

then we can express this result as
Ô
〈
Ψ
∣∣∣ φ̂(x, t)

∣∣∣Ψ〉 = 0

So if we multiply both sides of the result to the right by |φ〉 〈φ| with |φ〉 defined by φ̂(x, t) |φ〉 = φ(x, t) |φ〉
we obtain

Ô
(
〈Ψ| φ̂(x, t) |φ〉 〈φ| Ψ〉

)
= 0

where we are able to move |φ〉 〈φ| through Ô because their commutator is zero since |φ〉 〈φ| does not depend
on space or time coordinates.

Ô (〈Ψ| φ〉φ(x, t) 〈φ| Ψ〉) = 0(
Ôφ(x, t)

)
|Ψ|2[φ] = 0

Therefore we see that either φ satisfies the Klein-Gordon equation or Ψ[φ] = 0, and similarly for the
complex conjugate field. This means that the Schrodinger functional only accepts fields that obey the field
equation. Any field that does not obey the field equation always has a zero probability of manifesting. So
now we see the effect of the Schrodinger equation – it ensures that φ satisfies the field equation.



3 Complex Harmonic Oscillators

3.1 Re-expressing the Hamiltonian

The Klein-Gordon Hamiltonian can be re-expressed in a more illuminating way. If we perform some
manipulations, we can write it is an integral over complex harmonic oscillator Hamiltonians, where we use
the term complex harmonic oscillator to refer to a quantum oscillator that oscillates in the complex plane
rather than just along the real axis. We will see that this leads to a natural interpretation of the field as
a three-dimensional continuous lattice of coupled complex harmonic oscillators.

First we define Ĥ′(x) to be the non-kinetic part of the Klein-Gordon Hamiltonian density, i.e.

Ĥ′(x) ≡ 1
2
∇φ(x) ·∇φ∗(x) +

1
2
m2c2

~2
φ(x)φ∗(x)

Our goal is to convert this into a form that looks like a harmonic oscillator potential, i.e. something that
looks like 1

2m
2ω2φ2, but in a complexified form. The method is based on Fourier decomposition. We start

by inserting

φ(x) =
∫

d3q

(2π~)3
eiq·x/~φ̃(q) where φ̃(q) =

∫
d3x e−iq·x/~φ(x)

and

φ∗(x) =
∫

d3q

(2π~)3
e−iq·x/~φ̃∗(q) where φ̃∗(q) =

∫
d3x eiq·x/~φ∗(x)

Note that φ̃∗ is not the Fourier transform of φ∗, it is the complex conjugate of φ̃. Therefore

∇φ(x) =
∫

d3q

(2π~)3
eiq·x/~(iq/~)φ̃(q)

and

∇φ∗(x) =
∫

d3q′

(2π~)3
e−iq

′·x/~(−iq′/~)φ̃∗(q′)

So

∇φ(x) ·∇φ∗(x) =
∫

d3q

(2π~)3
d3q′

(2π~)3
ei(q−q′)·x/~(q · q′/~2)φ̃(q)φ̃∗(q′)

Finally we have

Ĥ′(x) =
1
2

∫
d3q

(2π~)3
d3q′

(2π~)3
ei(q−q′)·x/~(q · q′/~2 +m2c2/~2)φ̃(q)φ̃∗(q′)

Now we need to pull a little trick that relies on the fact that this Hamiltonian density is going to be
integrated over all space. It is important to note that the Hamiltonian density is not unique. There are
multiple Hamiltonian densities that produce the same Hamiltonian. Furthermore, we have no reason to
expect that one Hamiltonian density is more correct than any other, except for the fact that some may be
simpler than others. The trick is to notice that integration over all x will produce a delta function of the
form δ(q− q′), so we can interchange q and q′ whenever it is convenient.

Ĥ′(x) =
1
2

∫
d3q

(2π~)3
d3q′

(2π~)3
ei(q−q′)·x/~√q2/~2 +m2c2/~2φ̃(q)

√
q′2/~2 +m2c2/~2φ̃∗(q′)

Now we define ω(q) ≡ 1
~
√

q2c2 +m2c4 = c
√

q2/~2 +m2c2/~2 so that

Ĥ′(x) =
1
2

∫
d3q

(2π~)3
eiq·x/~(ω(q)/c)φ̃(q)

∫
d3q′

(2π~)3
e−iq

′·x/~(ω(q′)/c)φ̃∗(q′)

Ĥ′(x) =
1

2c2

∣∣∣∣∫ d3q

(2π~)3
eiq·x/~ω(q)φ̃(q)

∣∣∣∣2



Finally we multiply and divide by |φ(x)|2.

Ĥ′(x) =
1

2c2

∣∣∣∣∣∣
∫ d3q

(2π~)3
eiq·x/~ω(q)φ̃(q)∫ d3q

(2π~)3
eiq·x/~φ̃(q)

∣∣∣∣∣∣
2

|φ(x)|2

This suggests the definition

ωφ(x) ≡

∫ d3q
(2π~)3

eiq·x/~ω(q)φ̃(q)∫ d3q
(2π~)3

eiq·x/~φ̃(q)

which allows us to write
Ĥ′(x) =

1
2c2

|ωφ(x)|2 |φ(x)|2

We can see that our Hamiltonian density looks very reminiscent of a simple harmonic oscillator Hamiltonian

ĤKG(x) = 2c2π̂(x)π̂∗(x) +
1

2c2
|ωφ(x)|2|φ(x)|2

This definition of ωφ(x) is essentially a weighted average of the frequency of oscillation at the point x.
It is possible to rewrite ωφ(x) in terms of the convolution operator, which is defined by (f ∗ g)(x) =∫
dx′ f(x′)g(x− x′).

ωφ(x) =
1

φ(x)

∫
d3q

(2π~)3
eiq·x/~ω(q)φ̃(q)

=
1

φ(x)

∫
d3q

(2π~)3
eiq·x/~ω(q)

∫
d3x′ e−iq·x

′/~φ(x′)

=
1

φ(x)

∫
d3x′ φ(x′)

∫
d3q

(2π~)3
eiq·(x−x′)/~ω(q)

=
1

φ(x)

∫
d3x′ φ(x′)ω̃(x− x′)

Therefore

ωφ(x) =
(φ ∗ ω̃)(x)
φ(x)

where

ω̃(x) ≡
∫

d3q

(2π~)3
eiq·x/~ω(q)

Note that ω̃(x) is real because after taking the complex conjugate, we can substitute u = −q, which
produces the same integral because ω(q) is even. By the same method, we can see that ω̃(x) = ω̃(−x).

3.2 Physical Interpretation

At this point we can present a physical interpretation of the QFT field as a three-dimensional continuous
lattice of coupled complex harmonic oscillators. Let’s take a look at the Schrodinger functional equation

ĤKGΨ[φ, t] = i~
∂

∂t
Ψ[φ, t]∫

d3x
{
ĤKG(x)Ψ[φ, t]

}
= i~

∂

∂t
Ψ[φ, t]

This equation suggests that the time derivative breaks up into an integral over all space. The most
obvious way to make this happen is to make Ψ[φ] a continuous product over all space, Ψ[φ, t] =

∏
x Fx[φ, t].



Now we also note that ĤKG(x) will commute with any Fx′ [φ, t] when x′ 6= x because functional derivatives
at different points are zero. Therefore the equation looks like∫

d3x
(
ĤKG(x)Fx[φ, t]

) ∏
x′ 6=x

Fx′ [φ, t] = −i~
∫
d3x

∂

∂t
Fx[φ, t]

∏
x′ 6=x

Fx′ [φ, t]

By equating the coefficients of the products, this suggests that

ĤKG(x)Fx[φ, t] = −i~ ∂
∂t
Fx[φ, t]

or in other words that Fx[φ, t] is a solution to Schrodinger’s equation with Hamiltonian ĤKG(x). When
we look back at ĤKG(x) we see that it is a complex harmonic oscillator type Hamiltonian with coordinate
φ(x, t). Therefore we are inspired to declare

Fx[φ, t] = ψφx(φ(x, t))

and therefore since we set Ψ[φ, t] =
∏

x Fx[φ, t],

Ψ[φ, t] =
∏
x

ψφx(φ(x, t))

This gives us a very intuitive interpretation of the Schrodinger functional Ψ[φ, t]. Essentially, to determine
the probability amplitude that the field φ(x) will manifest upon measurement at given time, we need to
determine the probability amplitude that the complex oscillator at point x takes on the value φ(x) and
then multiply over all points in space according to the multiplicative property of probabilities. This is
perhaps the central concept of quantum field theory. It means that the wave functions of particles can be
interpreted as being determined by the wave functions of complex oscillators in a field of coupled oscillators.
Since continuous products are hard to define, we will rewrite this expression to avoid them

Ψ[φ, t] = eln(
∏

x ψ
φ
x(φ(x,t))) = e

∫
d3x ln(ψφ

x(φ(x,t)))

Next we will determine the form of ψ in this expression.

4 Ground State

4.1 Complex Harmonic Oscillator Solution

In order to determine the functional form of ψφx(φ(x)), we will simply generate an Ansatz by analogy with
the real harmonic oscillator and check that it works. After realizing that the most obvious analogous forms
do not work, we are led to try the following.

ψ0(φ(x), φ∗(x′)) = e−|ωφ(x)|2|φ(x)|2/2~c2ω̃(0)

Our task will be to show that this satisfies the Schrodinger equation with a Hamiltonian given by the Klein-
Gordon Hamiltonian density evalutated at one point. It will help to pre-compute the following functional
derivative.

δ

δφ(x′)
(ωφ(x)φ(x)) =

δ

δφ(x′)
(φ ∗ ω̃)(x) =

∫
d3x′′ ω̃(x′′)δ3(x′′ − (x− x′)) = ω̃(x− x′)

Applying the first functional derivative,

δ

δφ∗(x)
ψ0 = − 1

2~c2ω̃(0)
δ

δφ∗(x)
(
|ωφ(x)|2|φ(x)|2

)
ψ0



= − 1
2~c2ω̃(0)

δ

δφ∗(x)
(
ω∗φ(x)φ∗(x)

)
ωφ(x)φ(x)ψ0

= − 1
2~c2

ωφ(x)φ(x)ψ0

Now we apply the second functional derivative

δ

δφ(x)
δ

δφ∗(x)
ψ0 = − 1

2~c2
δ

δφ(x)
(ωφ(x)φ(x)ψ0)

= − 1
2~c2

(
δ

δφ(x)
(ωφ(x)φ(x))ψ0 + ωφ(x)φ(x)

δψ0

δφ(x)

)
= − 1

2~c2

(
ω̃(0)ψ0 + ωφ(x)φ(x)

(
− 1

2~c2
ω∗φ(x)φ∗(x)ψ0

))
=
(

1
4~2c4

|ωφ(x)|2|φ(x)|2 − 1
2~c2

ω̃(0)
)
ψ0

Multiplying by −2~2c2 to both sides of this equation yields

−2~2c2
δ

δφ(x)
δ

δφ∗(x)
ψ0 = − 1

2c2
|ωφ(x)|2|φ(x)|2ψ0 + ~ω̃(0)ψ0

−2~2c2
δ

δφ(x)
δ

δφ∗(x)
ψ0 +

1
2c2

|ωφ(x)|2|φ(x)|2ψ0 = u0ψ0

which is the desired Schrodinger equation with an infinite energy density u0 = ~ω̃(0).

4.2 Schrodinger Functional Ground State

We can compute the ground state of the Schrodinger functional8 Ψ0[φ] using ψφx(φ(x)) = e−|ωφ(x)|2|φ(x)|2/2~c2ω̃(0)

Ψ0[φ] = exp
[∫

d3x ln(ψφx(φ(x, t)))
]

= exp
[
− 1

2~c2ω̃(0)

∫
d3x|ωφ(x)|2|φ(x)|2

]
= exp

[
− 1

2~c2ω̃(0)

∫
d3x

∫
d3q

(2π~)3

∫
d3q′

(2π~)3
ei(q−q′)·x/~ω(q)ω(q′)φ̃(q)φ̃∗(q′)

]
= exp

[
− 1

2~c2ω̃(0)

∫
d3q

(2π~)3

∫
d3q′

(2π~)3
(2π~)3δ3(q− q′)ω(q)ω(q′)φ̃(q)φ̃∗(q′)

]

Ψ0[φ] = exp
[
− 1

2~c2ω̃(0)

∫
d3q

(2π~)3
ω2(q)|φ̃(q)|2

]
8The result can be compared with equation (10.26) in Hatfield.



5 Excited States

5.1 Complex Oscillator Excitations

We need to propose a new Ansatz for the excited states. The Ansatz is

ψn(φ(x), φ∗(x)) = ωnφ(x)φn(x)ψ0(φ(x), φ∗(x))

δ

δφ∗(x)
ψn = ωnφ(x)φn(x)

δψ0

δφ∗(x)

δ

δφ(x)
δ

δφ∗(x)
ψn =

δ

δφ(x)
(ωnφ(x)φn(x))

δψ0

δφ∗(x)
+ ωnφ(x)φn(x)

δ

δφ(x)
δψ0

δφ∗(x)

= nωn−1
φ (x)φn−1(x)ω̃(0)

δψ0

δφ∗(x′)
+ ωnφ(x)φn(x)

δ

δφ(x)
δψ0

δφ∗(x)

= nωn−1
φ (x)φn−1(x)ω̃(0)

(
− 1

2~c2
ωφ(x)φ(x)ψ0

)
+ ωnφ(x)φn(x)

(
1

4~2c4
|ωφ(x)|2|φ(x)|2 − 1

2~c2
ω̃(0)

)
ψ0

= − 1
2~c2

nω̃(0)ψn +
(

1
4~2c4

|ωφ(x)|2|φ(x)|2 − 1
2~c2

ω̃(0)
)
ψn

=
(

1
4~2c4

|ωφ(x)|2|φ(x)|2 − n+ 1
2~c2

ω̃(0)
)
ψn

Again, multiplying by −2~2c2 gives

−2~2c2
δ

δφ(x)
δ

δφ∗(x)
ψn +

1
2c2

|ωφ(x)|2|φ(x)|2ψn = unψn

where un = (n+ 1)~ω̃(0) is the infinite energy density. Similarly, the complex conjugate of this Ansatz is
also a solution.

5.2 Representing Particles

Suppose we are in a universe that contains just one particle that is localized at a point x i.e. the particles
wave function is a delta function. How does the theory represent this situation? The only way of encoding
information into the Schrodinger functional is through the excitation levels of the complex oscillators at
each point. It would not make much sense for a completely localized particle to cause excitations at remote
points in space, so we are led to propose that this situation will cause an excitation at x and we will assume
that it goes to the first excited state. What about the case when the particle is not entirely localized?
Logically one might guess that the Schrodinger functional would then be a superposition of excitations
at various points weighted by the probability of measuring the particle at each point. However, since the
Schrodinger functional is a probability amplitude, it should be weighted by something like a probability
amplitude, in this case the Klein-Gordon wave function of the particle.9

Ψφ1
1 [φ] =

∫
d3x φ1(x)ω∗φ(x)φ∗(x)Ψ0[φ]

where φ1(x) is the Klein-Gordon wave function of the particle. We have adopted the convention that the
complex conjugated form refers to the creation of particles and the un-complex conjugated form refers to
the creation of anti-particles. The fact that these two sets of solutions exist with identical spectra is how
this theory naturally introduces the idea of anti-particles.

9See Hatfield equation (2.69).



5.3 The Universal Field

What if we are given a Schrodinger functional and we want to know where the particles are inside it? The
Schrodinger functional just gives us a probability amplitude for each possible field, but it makes sense that
the most probable field would be the field where the particle wave functions are found as expected. We
can determine this field, which we call the universal field, by finding the extremum in Ψ[φ] by the method
of Lagrange multipliers with the constraint that the field is normalized. Our normalization condition will
be ∫

d3x′ ρφ(x′) = N

where

ρφ(x) ≡ i

2~c2
(φ∗φ̇− φφ̇∗)

is the Klein-Gordon probabilistic number density and N is the number of particles in the field minus the
number of anti-particles in the field.10 We also want to divide out by the ground state wave functional in
order to neglect contributions from vacuum fluctuations. The method of Lagrange multipliers tells us to
solve

δ

δφ∗(x)

(
Ψ[φ]
Ψ0[φ]

)
= λ

δ

δφ∗(x)

∫
d3x′

i

2~c2
(φ∗φ̇− φφ̇∗)

or
δ

δφ∗(x)

(
Ψ[φ]
Ψ0[φ]

)
= λ

i

2~c2
φ̇(x)

If we apply this to the case of Ψφ1
1 [φ],

δ

δφ∗(x)

∫
d3x′ φ1(x′)ω∗φ(x

′)φ∗(x′) = λ
i

2~c2
φ̇(x)

∫
d3x′ φ1(x′)ω̃(x′ − x) = λ

i

2~c2
φ̇(x)

Therefore

φ̇(x) =
2~c2

iλ
(φ1 ∗ ω̃)(x)

In order to solve for φ in this expression we need to look at the general solution of the Klein-Gordon
equation, which is given by

φ±(x, t) =
∫

d3q

(2π~)3
eiq·x/~e∓iω(q)t/~φ̃(q)

for an arbitrary complex-valued function φ̃(q) (See Appendix) This notation means that there are two
separate classes of solutions - those with positive energy and those with negative energy, and they do not
mix. 11

For now we are looking at positive energy particles (not anti-particles), so we take the + solution.
Taking the time derivative gives

φ̇+(x, t) =
∫

d3q

(2π~)3
eiq·x/~e−iω(q)t/~(−iω(q)/~)φ̃(q)

We can compare this to what we get if we take the convolution with ω̃.

φ+ ∗ ω̃(x, t) =
∫
d3x′

∫
d3q

(2π~)3
eiq·x/~e−iω(q)t/~φ̃(q)

∫
d3q′

(2π~)3
eiq

′·(x−x′)/~ω(q′)

10The constants in ρ are chosen so as to make N real and dimensionless. We are permitted to multiply by arbitrary constants
because any quantity proportional to a conserved quantity is also a conserved quantity.

11This paragraph is unclear.



=
∫

d3q

(2π~)3
d3q′

(2π~)3
eiq

′·x/~e−iω(q)t/~ω(q′)φ̃(q)
∫
d3x′ei(q−q′)·x′/~

=
∫

d3q

(2π~)3
d3q′

(2π~)3
eiq

′·x/~e−iω(q)t/~ω(q′)φ̃(q)(2π~)3δ3(q− q′)

=
∫

d3q

(2π~)3
eiq·x/~e−iω(q)t/~ω(q)φ̃(q)

Therefore, for φ representing particles

φ̇ = − i

~
φ ∗ ω̃ (for positive energy particles)

Similarly, φ̇ = i
~φ ∗ ω̃ for φ representing anti-particles.

Substituting this into the result of the Lagrange multipliers method,

− i

~
φ ∗ ω̃ =

2~c2

iλ
(φ1 ∗ ω̃)

We can then apply the convolution inverse of ω̃ to both sides to obtain

φ =
2~2c2

iλ
φ1

Plugging this into the constraint equation and using the normalization of φ1 i.e.
∫
d3x i

2~c2 (φ∗1φ̇1 −
φ1φ̇

∗
1) = 1 gives λ = 2~2c2

i , therefore

φ = φ1

That is, the most probable field is equivalent to the Klein-Gordon wave function of the particle in the
field.

5.4 Two Particles

Since we are dealing with bosons, we should be able to add a second particle to Ψφ1
1 [φ] in the same way

we added the first particle to Ψ0[φ].

Ψφ1φ2
2 [φ] =

∫
d3x′′ φ2(x′′)φ∗(x′′)ω∗φ(x

′′)Ψφ1
1 [φ]

Ψφ1φ2
2 [φ] =

∫
d3x′′d3x′ φ1(x′)φ2(x′′)φ∗(x′)ω∗φ(x

′)φ∗(x′′)ω∗φ(x
′′)Φ0[φ]

The method of Lagrange multipliers gives

λ
i

2~c2
φ̇ =

δ

δφ∗(x)

(
Ψφ1φ2

2 [φ]
Ψ0[φ]

)

=
∫
d3x′′d3x′ φ1(x′)φ2(x′′)ω̃(x′ − x)φ∗(x′′)ω∗φ(x

′′) +
∫
d3x′′d3x′ φ1(x′)φ2(x′′)φ∗(x′)ω∗φ(x

′)ω̃(x′′ − x)

= (φ1 ∗ ω̃)(x)
∫
d3x′′ φ2(x′′)φ∗(x′′)ω∗φ(x

′′) + (φ2 ∗ ω̃)(x)
∫
d3x′ φ1(x′)φ∗(x′)ω∗φ(x

′)

= (φ1 ∗ ω̃)(x)
∫
d3x′ φ2(x′)(φ∗ ∗ ω̃)(x′) + (φ2 ∗ ω̃)(x)

∫
d3x′ φ1(x′)(φ∗ ∗ ω̃)(x′)



In order to find the solution to this equation, we will have to use the orthonormality condition for
Klein-Gordon solutions. For particles with positive energy, the orthonormality condition is 12∫

d3x (φ∗aφ̇b − φ̇∗aφb) = −iδab

Using the relation derived from the general solution, φ̇ = − i
~φ ∗ ω̃ and φ̇∗ = i

~φ ∗ ω̃,∫
d3x (φ∗a(−

i

~
φb ∗ ω̃)− i

~
(φ∗a ∗ ω̃)φb) = −iδab∫

d3x (φ∗a(φb ∗ ω̃) + (φ∗a ∗ ω̃)φb) = ~2δab∫
d3x φ∗a(x)(φb ∗ ω̃)(x) +

∫
d3xd3x′ φ∗a(x

′)ω̃(x− x′)φb(x) = ~2δab∫
d3x φ∗a(x)(φb ∗ ω̃)(x) +

∫
d3x′ φ∗a(x

′)(φb ∗ ω̃)(x′) = ~2δab∫
d3x φ∗a(x)(φb ∗ ω̃)(x) =

1
2

~2δab

Now we can insert our Ansatz for the universal field φ = φ1 + φ2.

λ
i

2~c2
(φ̇1 + φ̇2) = (φ1 ∗ ω̃)(x)

∫
d3x′ φ2(x′)((φ∗1 +φ∗2) ∗ ω̃)(x′)+ (φ2 ∗ ω̃)(x)

∫
d3x′ φ1(x′)((φ∗1 +φ∗2) ∗ ω̃)(x′)

= (φ1 ∗ ω̃)(x)
∫
d3x′ φ2(x′)(φ∗2 ∗ ω̃)(x′) + (φ2 ∗ ω̃)(x)

∫
d3x′ φ1(x′)(φ∗1 ∗ ω̃)(x′)

=
1
2

~2(φ1 ∗ ω̃)(x) +
1
2

~2(φ2 ∗ ω̃)(x)

Therefore we have

− i

~
iλ

2~c2
(φ1 ∗ ω̃ + φ2 ∗ ω̃) =

1
2

~2(φ1 ∗ ω̃) +
1
2

~2(φ2 ∗ ω̃)

which is true for the appropriate choice of λ, so the Ansatz works: the universal field for a two particle
state is given by the sum of the Klein-Gordon wave functions for the two particles.

φ = φ1 + φ2

5.5 Indistinguishability

The fact that the universal field is the sum of the Klein-Gordon wave functions of the particles in the field
means that there is a loss of information that occurs after adding particles to a field. Even though we might
try to keep track of each particle’s wave function individually, the universe only keeps track of the sum of
the wave functions within each indistinguishability class. To get a picture of what this loss of information
means, consider what happens when two identical particles collide, or more precisely when two localized
wave functions pass through the same region. This can be visualized more simply by imagining two ripples
traveling toward each other on one rope. When the ripples collide, do they reflect off each other or pass
through each other unaffected? There is no answer to this question; the two cases are indistinguishable.13

The same concept applies to the collision of particles. If we were to treat each particle as if it could be
tagged and followed, then we would be over-counting the number of possible physical processes. This is why
we must account for indistinguishability when working within a particle-based interpretation of physics.

12See Practical Quantum Electrodynamics equation (4.48).
13This example comes from Teller’s book.



6 What about fermions?

This paper constructed a model based on a three-dimensional lattice of continuously coupled harmonic os-
cillators. Each oscillator evolves according to a Hamiltonian given by the complex Klein-Gordon Hamilto-
nian density evaluated at one point. This Hamiltonian is identical to the Hamiltonian of a two-dimensional
harmonic oscillator, which suggests that there is something like a two-dimensional plane at each point in
space. These planes may be purely mathematical, or they may represent some as yet unobserved physical
dimensions of reality. So is there any room for fermions in this model? There may be if we make a slight
modification. We will propose one option that is not necessarily correct, but demonstrates how it might
be possible to accommodate fermions. Suppose that instead of a plane at each point in space we have a
torus i.e. a square whose edges wrap around to the other side. This would be equivalent to a periodic
potential, and thus it would only support a finite number of bound states. Picture a ball bearing rolling
on the inside of a torus oriented with its axis parallel with the ground. If the ball had a low kinetic energy,
it would just oscillate like a pendulum bob. But if it had high enough kinetic energy, it would loop all the
way around the perimeter of the torus. This would correspond to an unbound state. The key difference
between bound and unbound states is that bound states have an expectation value of momentum of zero,
whereas unbound states must pick a direction for their orbits. Quantum mechanically, a jump from a
bound state to an unbound state would require a change in momentum. If there is no mechanism for
momentum transfer between toruses, then unbound states would be forbidden. So given the appropriate
size for the toruses, it could be arranged that each point in space only supports zero or one particles, just
as in the case of fermions.

7 Appendix A: General Solution of the Klein-Gordon Equation

The Klein-Gordon equation is (
1
c2
∂2

∂t2
−∇2 +

m2c2

~2

)
φ(x, t) = 0

We can find the general solution by inserting the Fourier decomposition of φ(x, t)(
1
c2
∂2

∂t2
−∇2 +

m2c2

~2

)∫
d3q

(2π~)3
eiq·xφ̃(q, t) = 0

∫
d3q

(2π~)3
eiq·x/~

(
1
c2

¨̃
φ(q, t) +

q2

~2
φ̃(q, t) +

m2c2

~2
φ̃(q, t)

)
= 0

This is solved by any function φ̃(q, t) that satisfies

¨̃
φ(q, t) = −ω

2(q)
~2

φ̃(q)

or
φ̃(q, t) = e±iω(q)t/~φ̃(q)

Therefore the general solution is

φ±(x, t) =
∫

d3q

(2π~)3
eiq·x/~e∓iω(q)t/~φ̃(q)

where φ̃(q) is an arbitrary complex-valued function.



8 Appendix B: Klein-Gordon Hamiltonian

We start by multiplying the Klein-Gordon equation by δφ∗ and integrating over all space and time.∫
d3x dt

[
δφ∗

(
1
c2
∂2

∂t2
−∇2 +

m2c2

~2

)
φ

]
= 0

Integrating by parts in the first and second terms,∫
d3x dt

[
− 1
c2
∂δφ∗

∂t

∂φ

∂t
+
∂δφ∗

∂x

∂φ

∂x
+
∂δφ∗

∂y

∂φ

∂y
+
∂δφ∗

∂z

∂φ

∂z
+
m2c2

~2
φδφ∗

]
= 0

∫
d3x dt

[
− 1
c2
δ

(
∂φ∗

∂t

)
∂φ

∂t
+ δ

(
∂φ∗

∂x

)
∂φ

∂x
+ δ

(
∂φ∗

∂y

)
∂φ

∂y
+ δ

(
∂φ∗

∂z

)
∂φ

∂z
+
m2c2

~2
φδφ∗

]
= 0

Now we add the same equation with φ and φ∗ swapped and divide by 2.

1
2

∫
d3x dt

[
− 1
c2
δ

(
∂φ

∂t

∂φ∗

∂t

)
+ δ

(
∂φ

∂x

∂φ∗

∂x

)
+ δ

(
∂φ

∂y

∂φ∗

∂y

)
+ δ

(
∂φ

∂z

∂φ∗

∂z

)
+
m2c2

~2
δ (φφ∗)

]
= 0

δ

∫
d3x dt

1
2

[
− 1
c2
∂φ

∂t

∂φ∗

∂t
+ (∇φ) · (∇φ∗) +

m2c2

~2
φφ∗

]
= 0

The principle of least action says that δS = 0, where S =
∫
dt L and L =

∫
d3x L, and to get the proper

Lagrangian density we multiply both sides by -1.

L =
1
2

[
1
c2
∂φ

∂t

∂φ∗

∂t
− (∇φ) · (∇φ∗)− m2c2

~2
φφ∗

]
Now that we have the Lagrangian density, we can use the canonical change of variables to convert it

into a Hamiltonian density. In classical mechanics we had the formula

H =
∑
k

pkq̇k − L

Now the values of φ(x, t) are the coordinates so we must convert the sum to an integral and then define
π(x, t) to be the conjugate momenta.

H =
∫
d3x

[
π(x)φ̇(x) + π∗(x)φ̇∗(x)

]
− L∫

d3x H =
∫
d3x π∗(x)φ̇∗(x) + π∗(x)φ̇∗(x)−

∫
d3x L

H = π(x)φ̇(x) + π∗(x)φ̇∗(x)− L

This is not the final result because in the Hamiltonian formalism, there are no explicit time derivatives
because they are replaced with the expression for momentum. In classical mechanics we had pk ≡ ∂L

∂q̇k
.

Now we have the functional derivative
π(x) =

δL

δφ̇(x)

Instead of solving this specifically, we can prove the following lemma.

δL[φ(x)]
δφ(y)

=
∂L
∂φ

(y)

By the definition of functional differentiation,

δL[φ(x)]
δφ(y)

= lim
ε→0

1
ε

∫
d3x {L[φ(x) + εδ(x− y)]− L[φ(x)]}



= lim
ε→0

1
ε

∫
d3x

{
L[φ(x)] + εδ(x− y)

∂L
∂φ

(φ(x)) +O(ε2)− L[φ(x)]
}

=
∫
d3x δ(x− y)

∂L
∂φ

(φ(x))

=
∂L
∂φ

(φ(y))

So we now have
π(x, t) =

∂L
∂φ̇(x)

=
1
2

1
c2
φ̇∗(x, t)

and similarly,

π∗(x, t) =
1
2

1
c2
φ̇(x, t)

Therefore
H = π(x)φ̇(x) + π∗(x)φ̇∗(x)− L

= 4c2π(x, t)π∗(x, t)− L

= 4c2π(x, t)π∗(x, t)− 1
2

[
4c2π(x, t)π∗(x, t)− (∇φ) · (∇φ∗)− m2c2

~2
φφ∗

]
Finally we obtain

HKG = 2c2π(x, t)π∗(x, t) +
1
2
(∇φ(x, t)) · (∇φ∗(x, t)) +

1
2
m2c2

~2
φ(x, t)φ∗(x, t)

9 Appendix C: Complex Partial Differentiation

Let f be a function of two independent complex parameters z1 and z2. We can reparameterize f to express
it in terms of just one complex variable and its complex conjugate by defining z = z1+iz2 and z∗ = z1−iz2.
This allows us to write f(z1, z2) = f(z, z∗). The partial derivative of f with respect to z holds z∗ constant
on the approach to the limit.

0 = ∆z∗ = (z1 + ∆z1)− i(z2 + ∆z2)− (z1 − iz2) = ∆z1 − i∆z2

Therefore, the partial derivative is

∂f(z, z∗)
∂z

= lim
∆z→0
∆z∗=0

f(z + ∆z, z∗)− f(z, z∗)
∆z

= lim
∆z1,z2→0

∆z1−i∆z2=0

f(z1 + ∆z1, z2 + ∆z2)− f(z1, z2)
∆z1 + i∆z2

= lim
∆z1,z2→0

∆z1−i∆z2=0

f(z1 + ∆z1, z2 + ∆z2)− f(z1, z2 + ∆z2) + f(z1, z2 + ∆z2)− f(z1, z2)
∆z1 + i∆z2

= lim
∆z1,z2→0

∆z1−i∆z2=0

f(z1 + ∆z1, z2 + ∆z2)− f(z1, z2 + ∆z2)
∆z1 + i∆z2

+ lim
∆z1,z2→0

∆z1−i∆z2=0

f(z1, z2 + ∆z2)− f(z1, z2)
∆z1 + i∆z2

= lim
∆z1→0

f(z1 + ∆z1, z2 − i∆z1)− f(z1, z2 − i∆z1)
∆z1 + ∆z1

+ lim
∆z2→0

f(z1, z2 + ∆z2)− f(z1, z2)
i∆z2 + i∆z2



=
1
2
∂f

∂z1
+

1
2i
∂f

∂z2

If we now restrict z1 and z2 to be real, they become the real and imaginary parts of z, which we write as
x and y respectively. Therefore, if z = x+ iy for x, y ∈ R,

∂f(z, z∗)
∂z

=
1
2
∂f

∂x
+

1
2i
∂f

∂y

Similarly,
∂f(z, z∗)
∂z∗

=
1
2
∂f

∂x
− 1

2i
∂f

∂y

These partial derivatives can be evaluated by treating z and z∗ as if they were completely independent
parameters, which explains the reason for treating φ and φ∗ as independent fields in quantum field theory.
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11 Todo

• Decide when to suppress parameters and when not to

• Mention difference between formulation and picture

• Can we derive Hatfield (2.69)? Maybe not, but we should decide on the optimal way of presenting
the logic.

• Explain why real φ does not make sense

• Show that solutions with energy less than m are decaying

• Explain units of φ

• Explain mattress model further

• Explain 2D oscillators

• We don’t know that vacuum fluctuations are additive in the universal field

• Extra term in Lagrangian?

• Make sure ω(q) has a Fourier transform

• Understand the role of relativistic quantum mechanics

• Check which sign in the KG solution is positive energy

• Appendix: Klein-Gordon Orthonormality Derivation

• Appendix: Functional Differentiation

• Appendix: Convolution Inverse of ω̃

• Appendix: Ehrenfest Theorem?

• Appendix: Schrodinger’s Equation?


