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In this paper we will show that if φ is a Klein-Gordon energy eigenstate, then the Klein-Gordon Hamiltonian
applied to the field φ gives

Ĥφ(x) = ~ωφ(x)φ(x)

where

ωφ(x) ≡

∫ d3q
(2π~)3

eiq·x/~ω(q)φ̃(q)∫ d3q
(2π~)3

eiq·x/~φ̃(q)

where
ω(q) ≡ 1

~
√

q2c2 + m2c4

First of all, we know that for the Klein-Gordon equation,

Ĥ2 = p̂2c2 + m2c4 .= −~2c2∇2 + m2c4

When we apply this to a plane wave state φq = eiq·x/~eiω0t we find

Ĥ2φq = (−~2c2∇2 + m2c4)eiq·x/~eiω0t

= (−~2c2(−q2/~2) + m2c4)eiq·x/~eiω0t

= ~2ω2(q)φq

We need to check if plane waves are in fact energy eigenstates and not just eigenstates of Ĥ2. We can do
this by taking the Taylor expansion of the square root in the Hamiltonian. We use the following Taylor
series
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Therefore
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)
Now since the plane wave φq is an eigenstate of the ∇2 operator, it is an eigenstate of this Hamiltonian.
So for a plane wave φq we have

Ĥφq = Eqφq

Ĥ2φ = E2
qφq = ~2ω2(q)φq

Therefore
Eq = ~ω(q)

We chose only the positive root because the Hamiltonian is the positive square root, so its eigenvalues can
never be negative.
Now, for a general energy eigenstate φ, we Fourier expand to find

Ĥφ(x) =
∫

d3q

(2π~)3
Ĥ
(
eiq·x/~

)
φ̃(q)



=
∫

d3q

(2π~)3
eiq·x/~~ω(q)φ̃(q)

Multiplying and dividing by φ,

= ~

∫ d3q
(2π~)3

eiq·x/~ω(q)φ̃(q)∫ d3q
(2π~)3

eiq·x/~φ̃(q)
φ(x)

So we have in the position representation,

Ĥφ(x) = ~ωφ(x)φ(x)


