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1 What are the formulations?

There are three basic formulations of constructive quantum field theory (cf. Bogoliubov,N.N., Shirkov,D.V.:
Introduction to the theory of quantized fields, Wiley, New York, 1980).

1. Canonical formulation. Quantum fields are operator-valued fields on the Minkowski space-
time Rd,1 that satisfy the canonical commutation relations and solve the classical Hamiltonian
equations. For interacting fields the equations are non-linear partial differential equations on
Rd,1. Unfortunately for d > 3, the relativistic irreducible quantum fields, which satisfy the
canonical commutation relations, are free by default (cf.[3]). Even the d = 3 case is trouble-
some. The simplest non-linearity in the perturbation theory is the 4 interaction. Yet for d = 3
renormalization screens out the perturbation (cf.[7]).

2. Feynman formulation. [Functional integral/Path integral] The quantum propagators of clas-
sical fields are Feynman integrals over classical histories on the Minkowski space-time Rd,1.
Since 1960s the prevalent approach is the Lagrangean Feynman- Kac infinite-dimensional in-
tegral over the space of histories on the euclidean space Rd+1 with the aposteriory analytic
continuation to the real time. This approach of K.Symanszik and E.Nelson has culminated in
the work of J.Glimm and A.Jaffe [10]. However, its application to interacting fields in the space
dimensions d > 2 is still open.

3. Functional Schrodinger formulation. The quantum states are functionals on the phase space
propagated by the evolution operator of a linear functional differential Schrodinger equation.
For quite some time the functional Schrodinger formulation has been presumed mathematically
unreasonable. Yet important analytic techniques for functional differential equations have been
developed in the P. Kree seminar at the Institut Henri Poincare in Paris during 70s.

The Feynman rules have been derived in the first two pictures. Peskin and Schroeder chapter 9, page 275
says

... we introduce in this chapter an alternative method of deriving the Feynman rules for an
interacting quantum field theory: the method of functional integration.

Chapter 4 derives the Feynman rules in the canonical formulation and chapter 9 derives them in the
Feynman/functional integral formulation as stated in this quotation.
In the paper “Precanonical quantization and the Schrodinger wave functional”, Igor Kanatchikov defines
a fourth formulation which he calls “Precanonical quantization”. This seems to be the same formulation
that we have been developing. However to me it seems that our formulation is just a more explicit form of
the Schrodinger formulation.

2 Why are multiple formulations?

I think that the various formulations correspond to different ways of enforcing that the underlaying field
obeys the desired field equation (the Klein-Gordon equation for our scalar field theory model).
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where Ô is the Klein-Gordon equation operator, L is the Klein-Gordon Langrangian, and Ĥ is the Klein-
Gordon Hamiltonian.

3 Feynman Rules

Following the development in Aitchison and Hey chapter 6, I created a flowchart showing how to derive
the Feynman rules in the canonical formulation.
The Tomonaga-Schwinger equation (simplified).
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The definition of the scattering operator Ŝ.
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The Dyson series expansion from Quantum Mechanics
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These all lead to the Dyson series expansion of the Ŝ operator (6.42).
Now if we take the matrix element of Ŝ and insert the interaction terms from the Hamiltonian we get an
expression for the transition amplitude, 〈
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Now defining the invariant amplitude by

Sfi = δfi + i(2π)4δ4(pf − pi)Mfi (6.102)

and using Wick’s theorem we discover the Feynman rules for determining M.
So where does quantum field theory enter into all of this? Most of the assumptions going in are either
definitions or quantum mechanics. I think the only place that QFT enters is through the insertion of the
interaction terms. This makes sense because in the interaction terms consist of φ̂ field operators that satisfy
special commutation relations that were generated by the assumption Ôφ̂ = 0 (See my third lecture of
Winter quarter). So it stands to reason that if the Schrodinger formulation enforces this same constraint,
then the Feynman rules should follow from it to.
Note that the non-interaction part of the Hamiltonian is not explicitly inserted. It still does affect the
result, however, because the φ̂ operator is defined so that it satisfies the field equation that corresponds to
the non-interaction part of the Hamiltonian, so the information is still there.


