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1 Introduction

The goal of this paper is to organize some notes on group theory, mostly in an attempt to understand what
was going on in the last paper on the Clebsch-Gordon decomposition.

2 The Kronecker Sum

Probably the biggest question that sticks out about the last paper is where did the “box product” definition
come from. It turns out that the real name for this operator is the Kronecker sum and it is written as

A⊕B ≡ A⊗ Im + In ⊗B

where I represents the identity matrix of the appropriate dimension, which may be different in the two
instances. The reason that the Kronecker sum is needed is because it has the following property

eA⊕B = eA ⊗ eB

(See the Wikipedia article called Kronecker Product). This property tells us that the Kronecker sums of
generators are the generators for the Kronecker product representation. We can see this more directly with
an example. Consider the 2 ⊗ 2 representation of SU(2), which consists of matrices of the form U ⊗ U
where U ∈ SU(2).1 We will only show the proof for matrices U that are infinitely close to the identity
matrix, but due to the fact SU(2) is a Lie Group, this is sufficient.

U ⊗ U = eiαiσi ⊗ eiαiσi

= (I + iαiσi)⊗ (I + iαiσi)

= I ⊗ I + iαi(σi ⊗ I) + iαi(I ⊗ σi) +O(α2)

= I ⊗ I + iαi(σi ⊕ σi)

= eiαi(σi⊕σi)

Therefore the generators of the 2⊗2 representation of SU(2) are σi⊕σi, where the is must be the same, but
they are not summed over. To be sure that this is in fact a representation of SU(2) we would have to show
that these generators obey the same commutation relations as the generators of the defining representation.

3 Definitions

• The order of a finite group G, written #G, is the number of elements in G. (Georgi-3)

• Let G be a group and M be a set. A map ψ : G ×M → M written as ψ(a,m) = a ·m is a group
action iff a · (b · m) = (ab) · m and e · m = m for all a, b ∈ G and m ∈ M . (Sternberg-12) The
motivation is that group actions allow us to establish a connection between abstract groups and
symmetries on sets, which is the primary application of group theory.

• Let G1 and G2 be groups under the operations ◦ and ∗ respectively. A map φ : G1 → G2 is a group
homomorphism iff φ(a ◦ b) = φ(a) ∗ φ(b) for all a, b ∈ G1. (Sternberg-6) The motivation is that a
group homomorphism indicates that G2 has a subgroup isomorphic to G1.

1If we allowed the two matrices to be different, then we would obtain a representation of SU(2)×SU(2) rather than SU(2).



• Let G be a group and V be a vector space. A group representation D is a group homomorphism
D : G → GL(V ). (Wikipedia-Group Representation) That is a map D : G → GL(V ) that satisfies
D(a)D(b) = D(ab) and D(e) = I for all a, b ∈ G, where I is the identity transformation on V . The
motivation is that group representations allow us to express group elements as matrices while ensuring
that matrix multiplication behaves just like the group multiplication. Being able to express group
elements as matrices is convenient because matrices can be rearranged by similarity transformations
to explicitly show which subspaces are non-interfering under the action of the symmetries. 2

• Let D and D′ be two representations of the group G, mapping to GL(V ) and GL(V ′) respectively.
D and D′ are equivalent representations or similar representations, written D ∼ D′ iff there
exists an invertible linear transformation S : GL(V ′) → GL(V ) such that for all a ∈ G, D′(a) =
S−1D(a)S. (Georgi-5) If V = V ′ we would say that there is a similarity transformation that relates
the representations. The motivation is that equivalent representations can be used to find more
convenient expressions for matrices that explicitly show which subspaces that are non-interfering
under the action of the symmetry.

• The dimension or degree of a representation is the dimension of the vector space V of the group
GL(V ) that the representation maps to. Physicists tend to use dimension (Georgi-3) while math-
ematicians tend to use degree (Sterberg-58). The motivation is that a representation of dimension
or degree d can be expressed as a set of d × d matrices, so it gives us a simple way of character-
izing representations by a simple property of their matrices. (Peskin-498) A given group can have
representations of various degrees. Any group has the trivial representation of degree one.

• The element D(a) ∈ D is called the representation matrix of the group element a ∈ G in the
representation D. (Gu-43) 3

• A Lie algebra is a vector space V , along with a binary operation, called the Lie bracket, that satisfies
bilinearity, anti-commutativity, and the Jacobi identity. (Wikipedia-Lie Algebra) 4

• A Lie Algebra associated to a Lie group G is a Lie algebra whose vector space is the span of
the generators of G and whose Lie bracket is the commutator. (Peskin-495) (Wikipedia-Lie Group)

• The rank of a Lie group is the number of generators of the group that simultaneously commute
among themselves. (Kaku-54)

• A Casimir operator is an operator that commutes with all the generators of an algebra. (Kaku-55)
For example, the group O(3) has the Casimir operator L2 = L2

1 + L2
2 + L2

3, where the Li are the
generators.

• More terms to define: orbit, stabilizer/isotropy subgroup, transitive, coset, conjugacy class, mor-
phism, invariant, cartesian product, fixed point set, index, character, generator, induced representa-
tion, restricted representation, Lie Group

• We also need explanations for fundamental, adjoint, defining, and regular representations.

4 Facts

• Gauge bosons are in the adjoint representation and all other particles are in the fundamental repre-
sentation. (Zvi Bern)

2Sternberg defines group representations to be actions on V , but his definition is less clear and the Wikipedia definition is
consistent with Georgi’s definition.

3It seems that in one case representation matrix is used to mean generator matrix. “The representation matrices are given
by the structure constants: (tb

G)ac = ifabc.” (Peskin-499)
4A Lie algebra representation is different than a group representation.



• Mixed Product Property: (A⊗B)(C ⊗D) = (AC)⊗ (BD) (Wikipedia-Kronecker Product)

• All representations of the same group have the same number of generators.

• Suppose that M decomposes into orbits under the action of G: M = M1 ∪ · · · ∪Mk. Then we have
a corresponding decomposition rM = rM1 ⊕ · · · ⊕ rMk . (Sternberg-62)

• The relationship between characters and fixed point sets is: χrM
(a) = #FP (a). (Sternberg-62)

• When we let a group act on functions on the group itself, the resulting representation contains all
irreducible representations in its decomposition. (Sternberg-62)

• If r is an irreducible representation of G and s is an irreducible representation of H, then r⊗ s is an
irreducible representation of G×H. (Sternberg-66)

• The number of distinct irreducible representations is equal to the number of conjugacy classes.
(Sternberg-68)

• G is Abelian if and only if all its irreducible representations are one dimensional (Sternberg-71)

• Suppose that the group G has a commutative subgroup H. Then any irreducible representation of
G has degree at most #G/#H.

• It is one of the axioms of quantum field theory that the fundamental fields of physics transform as
irreducible representations of the Lorentz and Poincare groups. (Kaku-58)

5 Notation

• e is the identity element in the group G. (Sternberg-1)

• x∗ is the adjoint of the matrix x. (Sternberg-7)

• #G is the number of elements in the group G. (Sternberg-13)

• G ·m is the orbit of the point m under the action of G on M . (Sternberg-13)

• Gm is the isotropy group or stabilizer of the group G on the point m. (Sternberg-13)

• aGm is the coset of element a in the group Gm. (Sternberg-14)

• G/Gm is the set of cosets of the group G. (Sternberg-14)

• G×M is the cartesian product of the sets G and M . (Sternberg-24)

• FP (a) is the fixed point set of the element a in the group G. (Sternberg-25)

• r ∼ r′ means that r and r′ are equivalent or similar representations. (Sternberg-49)

• HomG(V1, V2) is the vector space of all linear maps from V1 to V2. (Sternberg-55)

• F(M) is the vector space of all complex-valued functions on the set M . (Sternberg-60)
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