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So why does the Kronecker product enter into quantum mechanics? It has to do with solutions to
Schrodinger’s equation when the potential is separable. Consider the general case of a two spin zero
particles.

− ~2

2m
∇2ψ(x, x′) + V (x, x′)ψ(x, x′) = i~

∂

∂t
ψ(x, x′)

Now assume that the potential is separable i.e. V (x, x′) = Va(x) + Vb(x′). Then we can show that the
solution can be written as ψ(x, x′) = ψa(x)ψb(x′).

− ~2

2m
∇2(ψa(x)ψb(x′)) + (Va(x) + Vb(x′))ψa(x)ψb(x′) = i~

∂

∂t
ψa(x)ψb(x′)

− ~2

2m
[(∇2ψa)ψb + ψa(∇2ψb)] + (Va + Vb)ψaψb = i~[(∂tψa)ψb + ψa(∂tψb)]

Now we divide by ψa(x)ψb(x′),

− ~2

2m
[(∇2ψa)/ψa + (∇2ψb)/ψb] + (Va + Vb) = i~[(∂tψa)/ψa + (∂tψb)/ψb]

Now rearranging,

− ~2

2m
(∇2ψa)/ψa + Va − i~(∂tψa)/ψa =

~2

2m
(∇2ψb)/ψb − Vb + i~(∂tψb)/ψb]

Now the left and right hand sides are functions of mutually independent variables, so they must both
be equal to the same constant, which can be set to zero without loss of generality by sifting the zero of
potential. Therefore, we see that Schrodinger’s equation holds for both particles separately, which is what
we expect.

Really this logic is backwards. It makes more sense to start with two non-interacting particles, so two
separate copies of Schrodinger’s equation, and then proceed upwards to the conclusion that the product of
the wave functions is again a solution to Schrodinger’s equation, with the additional fact that the potential
is separable. However the algebra is better motivated in the order that it is shown here.

Now we can see that this is the base case for the Kronecker product,

ψa ⊗ ψb = ψaψb

when the solutions are thought of as one component spinors. To see the pattern, we should check to see
what happens when we use two-component spinors

χa =
(
ψa1

ψa2

)
and χb =

(
ψb1

ψb2

)
It may not be obvious what it means for an operator to act on a vector. Say we take the derivative of

a vector valued function. The derivative moves inside the vector to act on the functions,

∂xV(x) = ∂x

(
f(x)
g(x)

)
=

(
∂xf(x)
∂xg(x)

)
This is not an assumption, it is forced by the definition of the derivative. Therefore the Hamiltonian
operator can be moved inside or outside a vector. The reason this can be confusing is that there are some
operators that are specifically designed to act on the vectors themselves (such as spin operators in the form
of Pauli matrices), and thus cannot be moved inside to act on the vector’s components.



Before continuing we need to prove a lemma about how the Hamiltonian acts on products of wave
functions. If Ĥa is a linear operator constructed from x̂ and p̂, and if Ĥb is a linear operator constructed
from x̂′ and p̂′, and Ĥ = Ĥa + Ĥb, then

Ĥ(ψa(x)ψb(x′)) = (Ĥaψa(x))ψb(x′) + ψa(x)(Ĥbψb(x′))

The proof is based on the product rule and the fact that the primed and unprimed operators are indepen-
dent.

Ĥ(ψa(x)ψb(x′)) = Ĥa(ψa(x)ψb(x′)) + Ĥb(ψa(x)ψb(x′))

= (Ĥaψa(x))ψb(x′) + ψa(x)(Ĥaψb(x′)) + (Ĥbψa(x))ψb(x′) + ψa(x)(Ĥbψb(x′))

The middle two terms drop out because of independence of variables and we are left with the statement
we wished to show. Question: How can we prove that x̂ψ(x′) = 0?

Now one of the fundamental properties of the Schrodinger equation is that it is linear. That is what
allows us to express states as linear combinations of energy eigenstates for example. Spinors are solutions
to Schrodinger’s equation, so spinors must have this property also. Question: How can we rigorously prove
that it has to be bilinear? i.e. (A+B) ∗ C = A ∗ C +B ∗ C and A ∗ (B + C) = A ∗B +A ∗ C.

So we want to find a bilinear operation ∗ that combines all the information from two states and forms
a new state. Then we will show that ∗ has to be the Kronecker product ⊗.

Since ∗ is bilinear,

∂x(χa(x) ∗ χb(x′)) = lim
h→0

(χa(x+ h) ∗ χb(x′)− χa(x) ∗ χb(x′))/h

= lim
h→0

(χa(x+ h)− χa(x))/h ∗ χb(x′) = (∂xχa(x)) ∗ χb(x′)

Therefore, a bilinear operation ∗ must satisfy

Ĥ(χa ∗ χb) = (Ĥaχa) ∗ χb + χa ∗ (Ĥbχb)

If we assume that ∗ is ⊗ and expand the definition of the Kronecker product,
Ĥ(ψa1ψb1)
Ĥ(ψa1ψb2)
Ĥ(ψa2ψb1)
Ĥ(ψa2ψb2)

 =


Ĥa(ψa1)ψb1

Ĥa(ψa1)ψb2

Ĥa(ψa2)ψb1

Ĥa(ψa2)ψb2

 +


ψa1Ĥb(ψb1)
ψa1Ĥb(ψb2)
ψa2Ĥb(ψb1)
ψa2Ĥb(ψb2)


And this equation we recognize to be true by the lemma, so we have shown that ⊗ works as the needed
operator ∗. If you try defining ∗ by

χa ∗ χb =


ψa1

ψa2

ψb1

ψb2


you will find that it does not satisfy bilinearity. If you define ∗ by

χa ∗ χb =
(
ψa1ψb1

ψa2ψb2

)
it will be bilinear, but you will have lost information since you started with four independent functions
and now have only two. I believe it turns out that the Kronecker product is the only definition of ∗ that
works without redundancies.


