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1 Second Quantization

The motivation for second quantization comes from the need for variable numbers of particles. Let φ̂(x, t)
be the operator whose eigenvalues correspond to solutions to the Klein-Gordon equation. We can write it
in terms of its Fourier transform

φ̂(x, t) =
∫

d3p

(2π)3
eip·xφ̂(p, t)

So we would like to determine φ̂(p, t), which should satisfy the Klein-Gordon equation in momentum space[
∂2

∂t2
+ (|p2|+m2)

]
φ̂(p, t) = 0[

∂2

∂t2
+ ω2

p

]
φ̂(p, t) = 0

where ωp =
√
|p2|+m2. We recognize the similarity between this and the equation of motion of a simple

harmonic oscillator
ẍ+ ω2x = 0

which can be converted into an operator equation[
∂2

∂t2
+ ω2

]
x̂ = 0

This has the same meaning as the previous equation, except that it must be applied to a state in order to
form a real equation. We know from quantum mechanics that we can write x̂ as

x̂ =
1√
2ω

(
â+ â†

)
So we have [

∂2

∂t2
+ ω2

] [
1√
2ω

(
â+ â†

)]
= 0

Now we can turn this into an infinite set of equations, one for each p by making ω, a, a† functions of p.[
∂2

∂t2
+ ω(p)2

][
1√

2ω(p)

(
â(p) + â†(p)

)]
= 0

By comparing this with the Klein-Gordon operator equation we may guess that

φ̂(p, t) ?=
1√

2ω(p)

(
â(p) + â†(p)

)
But we need to be careful if we want φ(x, t) to be real. In that case we require φ(x, t) = φ∗(x, t), which
is satisfied by φ∗(p, t) = φ(−p, t). So we want to negate the momentum in one of the a parameters. We
choose the second

φ̂(p, t) =
1√

2ω(p)

(
â(p) + â†(−p)

)
Therefore we conclude that 1

φ̂(x, t) =
∫

d3p

(2π)3
1√

2ω(p)
eip·x

(
â(p) + â†(−p)

)
1See Peskin and Schroeder (2.27)



2 Field-Wavefunction Relation Using Position Eigenstates

A state containing a single particle with wave-function ψ(x) is given by 2

|Ψ1〉 =
∫
d3x′ ψ(x′)φ̂∗(x′) |0〉

Therefore we compute the position representation of the QFT field in analogy with quantum mechanics
by applying a position eigenstate.

Ψ1(x) = 〈x| Ψ1〉 =
∫
d3x′

〈
x
∣∣∣ψ(x′)φ̂∗(x′)

∣∣∣0〉

=
∫
d3x′

〈
x

∣∣∣∣∣ψ(x′)
∫

d3p

(2π)3
1√

2ω(p)
e−ip·x′

â†(p)

∣∣∣∣∣0
〉

=
∫
d3x′

〈
x

∣∣∣∣∣ψ(x′)
∫

d3p

(2π)3
1√

2ω(p)
1

(2π)3/2

〈
p
∣∣ x′〉 â†(p)

∣∣∣∣∣0
〉

=
∫
d3x′

〈
x
∣∣ x′〉ψ(x′)

∫
d3p

(2π)3
1√

2ω(p)
1

(2π)3/2

〈
p
∣∣∣ â†(p)

∣∣∣0〉
= ψ(x)

∫
d3p√
2ω(p)

1
(2π)3/2

〈
p
∣∣∣ â†(p)

∣∣∣0〉
= ψ(x)

∫
d3p

2ωp

1
(2π)3/2

〈p| ψp〉

using the equation |ψp〉 =
√

2ω(p)a†(p) |0〉.3 But this is bad because it means

Ψ1(x) = ∞ · ψ(x)

3 Field-Wavefunction Relation Using Localized Particle States

In analogy with quantum mechanics, we can find the field itself by applying a single particle state localized
at x, which we denote by |ψx〉

Ψ1(x) = 〈ψx| Ψ1〉 =
∫
d3x′

〈
ψx

∣∣∣ψ(x′)φ̂∗(x′)
∣∣∣0〉

=
∫
d3x′

〈
ψx

∣∣ψ(x′)
∣∣ψx′

〉
=

∫
d3x′ ψ(x′) 〈ψx| ψx′〉

=
∫
d3x′ ψ(x′)δ(x− x′) = ψ(x)

Therefore, for a single particle, the QFT field is the QM field. Next we consider the case of two particles.

Ψ2(x)
?= 〈ψx| Ψ2〉 =

∫ ∫
d3x′ d3x′′ ψ1(x′)ψ2(x′′) 〈ψx| ψx′ , ψx′′〉

But the bracket will always be zero because of the following argument. For example, consider the case

〈ψx| ψx, ψy〉 =
〈
0
∣∣∣ φ̂(x)φ̂∗(x)φ̂∗(y)

∣∣∣0〉
= 〈0| ψy〉 = 0

2See Hatfield (2.69)
3See Peskin and Schroeder (2.35)



In general, if there are any odd number of creation and annihilation operators in a ground state expectation
value, then the result will be zero by orthogonality of states. So the projection with the set of single particle
position eigenstates always gives zero. The analogy with quantum mechanics does not apply directly to
give the field in the position representation. The problem is that we need to project with a state that does
not care how many other particles there are in the universe. We define

〈ψ∗
x| ≡ 〈ψx|+

∫
d3z 〈ψx, ψz|+

∫ ∫
d3z d3z′ 〈ψx, ψz, ψz′ |+ · · ·

Then we can define Ψ2(x) by

Ψ2(x) ≡ 〈ψ∗
x| Ψ2〉 =

∫ ∫ ∫
d3z d3x′ d3x′′ ψ1(x′)ψ2(x′′) 〈ψx, ψz| ψx′ , ψx′′〉

=
∫ ∫ ∫

d3z d3x′ d3x′′ ψ1(x′)ψ2(x′′)[δ(x− x′)δ(z − x′′) + δ(x− x′′)δ(z − x′)]

=
∫ ∫

d3x′ d3x′′ ψ1(x′)ψ2(x′′)[δ(x− x′) + δ(x− x′′)]

=
∫ ∫

d3x′ d3x′′ ψ1(x′)ψ2(x′′)[δ(x− x′) + δ(x− x′′)]

= ψ1(x)
∫
d3x′′ ψ2(x′′) + ψ2(x)

∫
d3x′ ψ1(x′)

Therefore, under this definition, the QFT field containing two particles is a linear combination of the QM
wave-functions of the particles,

Ψ2(x) = c1(t)ψ1(x) + c2(t)ψ2(x)

4 Questions

• How do you derive Hatfield (2.69) and why does it contain the wave-function instead of the probability
(magnitude squared of wave-function)?

• Why does φ̂ in the first section have to be real?


