
Universal Field

Chris Clark April 12, 2008

1 Introduction

Let |Φ〉 be a QFT state. The definition of the Schrodinger functional is

Φ[φ] ≡ 〈φ| Φ〉

where

φ̂ |φ〉 = φ |φ〉
By taking the Hermitian conjugate of both sides,

〈φ| φ̂† = φ∗ 〈φ|

2 One Particle

Using Hatfield equation (2.69), the QFT state corresponding to a universe containing a single particle with
wave function ψ is ∣∣∣Φψ

1

〉
=
∫
d3x ψ(x, t)φ̂†(x, t) |Φ0〉

Therefore

Φψ
1 [φ] =

∫
d3x ψ(x, t) 〈φ| φ̂†(x, t) |Φ0〉

Φψ
1 [φ] =

∫
d3x ψ(x, t)φ∗(x, t) 〈φ| Φ0〉

Φψ
1 [φ] = (ψ · φ∗)Φ0[φ]

We notice that Φψ
1 [ψ] = Φ0[ψ] by the normalization of ψ. We also notice that any φ whose complex

conjugate does not overlap with ψ will make the Schrodinger functional zero. Now, with our assumption
that the Schrodinger functional represents the probability that some universal field is in the state given by
the parameter, we should be able to extract the universal field itself. The universal field should be equal
to whatever field φ maximizes the Schrodinger functional since that would make it the most likely field.
For simplicity we will assume that the ground state functional does not affect the result, and hence divide
it out. Therefore we will define the universal field φuniv to be the field that maximizes Φ[φ]/Φ0[φ] subject
to the constraint that

∫
φ(x, t)φ∗(x, t) d3x = N , where N is the number of particles in the field. Using

Lagrange multipliers for functional calculus, we see that φuniv is the solution to

δ

δφ∗(x)

(
Φ[φ]
Φ0[φ]

)
= λ

δ

δφ∗(x)

∫
φ(x′, t)φ∗(x′, t) d3x′

Now we must realize that we can treat φ and φ∗ as independent variables. This follows from the fact that
the real and imaginary parts of φ are independent. We can perform a change of variables to φ and φ∗

retaining independence. 1 Therefore, φuniv is the solution to

δ

δφ∗(x)

(
Φ[φ]
Φ0[φ]

)
= λ

∫
δ(x′ − x)φ∗(x′, t) d3x = λφ(x, t)

1See “Extremum Change of Variables” in the Derivations section of dfcd.net, and also see Quantum Theory of the Solid
State by Lev Kantorovich pg 498.



3 Two Particles

Now let’s consider the case of a universe containing two particles with non-overlapping wave functions ψ1

and ψ2.

Φψ1ψ2
2 = 〈φ|

∫
ψ1(x1, t)φ†(x1, t) d3x1

∫
ψ2(x2, t)φ†(x2, t) d3x2 |Φ0〉

=
∫
ψ1(x1, t)φ∗(x1, t) 〈φ|

∫
ψ2(x2, t)φ†(x2, t) d3x2 |Φ0〉

=
∫
ψ1(x1, t)φ∗(x1, t)

∫
ψ2(x2, t)φ∗(x2, t) d3x2 Φ0[φ]

Therefore,
δ

δφ∗(x)

(
Φψ1ψ2

2 [φ]
Φ0[φ]

)
= ψ1(x, t)(ψ2 · φ∗) + (ψ1 · φ∗)ψ2(x, t)

So φuniv is the solution to

ψ1(x, t)(ψ2 · φ∗) + (ψ1 · φ∗)ψ2(x, t) = λφ(x, t)

We can guess and check that the solution is

φuniv(x, t) = ψ1(x, t) + ψ2(x, t)

with λ = 1. This relies on the fact that ψ1 and ψ2 are non-overlapping. So it seems that φuniv will
tell you where the particles are in a given QFT state. It is very interesting that this constitutes a loss
of information. When we constructed the state we knew that we had two localized particles, but after
constructing the state, all we remember is the sum of the wave functions. In cases with no overlap we
can assume that there are two distinct particles, but in cases of overlap, there will be indistinguishability
issues inherent in the model. This is exactly analogous to the simple example of two ripples on a string
travelling in opposite directions. When they meet, there is no correct answer to the question of whether
they passed through each other or bounced off each other.2

4 Question

There are a few things that need to be looked into further. One obvious thing is the case of two particles
with overlapping wave functions. Another is to check the assumption that we can divide by the ground
state Schrodinger functional. It may be that this could affect the maximization. If not, it would still be
nice to have some justification for why the ground state Schrodinger functional should be divided out.

2This example is from “An Interpretive Introduction to Quantum Field Theory” by Paul Teller.


