Let *H* be the Hamiltonian for the hydrogen atom, including spin. $\hbar \mathbf{L} = \mathbf{r} \times \mathbf{p}$ and $\hbar \mathbf{s}$ are the orbital and spin angular momentum, respectively, and $\mathbf{J} = \mathbf{L} + \mathbf{s}$. Conventionally, the states are labeled $|n, l, j, m\rangle$ and they are eigenstates of *H*, \mathbf{L}^2 , \mathbf{J}^2 , and J_z .

In parts (a) and (d) you may state the answer to lowest nonvanishing order — ignore spin-orbit and relativistic effects.

- (a) If the electron is in the state $|n, l, j, m\rangle$, what values will be measured for these four observables in terms of \hbar , c, the fine-structure constant α , and the electron mass m?
- (b) What are the restrictions on the possible values of n, l, j, and m?
- (c) Let $J_{\pm} = J_x \pm i J_y$. What are
 - (i) $\langle 3, 1, \frac{3}{2}, \frac{3}{2} | J_+ | 3, 1, \frac{3}{2}, -\frac{1}{2} \rangle = ?$
 - (ii) $\langle 3, 1, \frac{3}{2}, \frac{3}{2} | J_+ | 3, 1, \frac{3}{2}, \frac{1}{2} \rangle = ?$
 - (iii) $\langle 2, 1, \frac{1}{2}, -\frac{1}{2} | \mathbf{L}^2 | 2, 1, \frac{1}{2}, -\frac{1}{2} \rangle = ?$
 - (iv) $\langle 3, 2, \frac{3}{2}, -\frac{1}{2} | \mathbf{J}^2 | 3, 2, \frac{3}{2}, -\frac{1}{2} \rangle = ?$ (v) $\langle 3, 1, \frac{3}{2}, \frac{3}{2} | J_z | 3, 1, \frac{3}{2}, \frac{1}{2} \rangle = ?$
- (d) What are
 - (i) $\left\langle 2, 1, \frac{3}{2}, \frac{3}{2} \middle| p_z \middle| 2, 1, \frac{3}{2}, \frac{1}{2} \right\rangle = ?$ (ii) $\left\langle 1, 0, \frac{1}{2}, \frac{1}{2} \middle| p_i p_j \middle| 1, 0, \frac{1}{2}, \frac{1}{2} \right\rangle = ?$

Consider the one-dimensional harmonic oscillator. The Hamiltonian is

$$H_0 = \frac{p^2}{2m} + \frac{m\omega^2 x^2}{2}$$

(a) Define the operator

$$U = e^{ipb/\hbar}$$

for some real number b. Here p is the momentum operator. What is the ground state wave function (up to the normalization constant) for the Hamiltonian

$$H = U H_0 U^{\dagger}$$
 ?

Note: If you know the answer, it is enough just to write it down. The derivation is allowed, but not required for full credit.

(b) Suppose a term αx^3 is added to the Hamiltonian H_0 . Calculate the change in the energy of each level, through second order in α . Please write your answer as a constant independent of the level number n, times a polynomial or ratio of polynomials in n.

An electron in the n = 3, l = 0, m = 0 state of hydrogen decays by a sequence of electric dipole transitions to the ground state.

- (a) What decay routes are possible? Specify them by listing the sequence of states $|nlm_l\rangle$ in each possible route.
- (b) If you had a large number of atoms in this state |300>, what fraction of them would decay via each route? Give an explicit justification for your answer from the expression for the matrix element of the relevant operator.

Hint: You may want to use some of the following:

$$Y_0^0 = \frac{1}{\sqrt{4\pi}}$$
$$Y_1^0 = \sqrt{\frac{3}{4\pi}} \cos \theta$$
$$Y_1^{\pm 1} = \mp \sqrt{\frac{3}{8\pi}} \sin \theta \, e^{\pm i\phi}$$

The Hamiltonian for a system consisting of three distinguishable spin half particles is

$$H = A(\mathbf{s}_1 \cdot \mathbf{s}_2 + \mathbf{s}_2 \cdot \mathbf{s}_3 + \mathbf{s}_3 \cdot \mathbf{s}_1)$$

where \mathbf{s}_i is the spin of the *i*th particle, and all the components of the spin of one particle commute with all the components of the spins of the others. What are the eigenvalues of *H*, and what are the degeneracies of each energy level?

In this problem, neglect spin and relativistic effects, and use the Born approximation.

(a) Suppose an electron scatters off a spherically symmetric potential V(r). Write down (or compute if you don't remember) the formula for the Born approximation to the scattering amplitude $f(\theta, \phi)$, in the form of a one-dimensional radial integral:

$$f(\theta, \phi) = \int_0^\infty (\text{some function of } r) \times V(r) \, \mathrm{d}r$$

(b) Now suppose that the electron scatters elastically off a spherically symmetric charge distribution, with charge density $\rho(r)$ centered at the origin. (This is not a local potential, but the answer to part (a) may still be useful.)

Calculate, in the Born approximation (that is, to first order in the potential), the scattering amplitude $f(\theta, \phi)$ and write it as

$$f(\theta,\phi) = f_R(q^2)F(q^2)$$

where **q** is the momentum transferred between the incident and the scattered electron, and $f_R(q^2)$ is the Rutherford amplitude for scattering off a point charge:

$$f_R(q^2) = \frac{2mZ\alpha}{\hbar^2 q^2}$$

Here α is the fine-structure constant. The function $F(q^2)$ is called the "form factor". Write an explicit formula for $F(q^2)$ in terms of $\rho(r)$.

(c) Now specialize to an electron scattering elastically off a uniformly charged sphere, centered at the origin, with radius R and total charge Ze. What is $F(q^2)$ as a function of q and R?

Hint: You might want the definite integral

$$\int_0^\infty e^{-\mu r} \sin(qr) \, \mathrm{d}r = \frac{q}{q^2 + \mu^2}$$

and the indefinite integrals

$$\int x \sin x \, dx = \sin x - x \cos x$$
 and $\int x \cos x \, dx = \cos x + x \sin x$

Note: The scattering amplitude is defined so that its square is the differential cross section:

$$|f|^2 = \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}$$

"Cold" stars (that is, stars that have exhausted their nuclear fuel) are stabilized against gravitational collapse by the degeneracy pressure of the electrons, or, at higher densities, neutrons. To model this effect, consider a spherical star of mass M, mass density ρ , radius R, and volume V, consisting of neutrons of mass m_n .

(a) Calculate the gravitational potential of the star, that is, the gravitational potential of a uniform massive sphere of radius R.

Answer:

$$V_G = -\frac{(2\pi)^2 \rho^2 G}{15} R^5$$

where G is Newton's gravitational constant.

- (b) Obtain the corresponding gravitational pressure P_G .
- (c) View the neutrons as a cold, ideal neutron gas. Compute the energy and the degeneracy pressure of the fermion gas at T = 0 assuming
 - (i) the gas is nonrelativistic $(p \ll m)$.
 - (ii) the gas is ultrarelativistic $(p \gg m)$.

Is there an equilibrium radius for the star in

- (i) the nonrelativistic case?
- (ii) the ultrarelativistic case?

If there is no equilibrium radius, what is the critical particle number $N = N_e$ above which gravitational collapse is unavoidable?

In a temperature range near some absolute temperature T, the tension force F of a stretched plastic rod is related to its length L by the expression

$$F = \alpha T^2 (L - L_0)$$

- (a) Write down the fundamental thermodynamic relation for this system, expressing dS in terms of dL and dE.
- (b) The entropy S(T, L) of the rod is a function of T and L. Compute $\left(\frac{\partial S}{\partial L}\right)_{\tau}$.
- (c) Knowing $S(T_0, L_0)$, find S(T, L) at any other temperature T and length L. (It is most convenient to calculate first the change of entropy with temperature at the length L_0 where the heat capacity is known.)
- (d) If you start at $T = T_i$ and $L = L_i$ and stretch the thermally insulated rod quasi-statically until it attains the length L_f , what is the final temperature T_f ?
- (e) Calculate the heat capacity $C_L(L,T)$ of the rod when its length is L instead of L_0 .
- (f) Calculate S(T, L) by writing $S(T, L) S(T_0, L_0) = [S(T, L) S(T_0, L)] + [S(T_0, L) S(T_0, L_0)]$ and using the result of part (e) to compute the first term in square brackets. Show that the final answer agrees with the one found in part (c).

An anisotropic medium has a tensor conductivity given by

$$\overleftarrow{\sigma} = \left(\begin{array}{ccc} \sigma_{\perp} & 0 & 0 \\ 0 & \sigma_{\perp} & 0 \\ 0 & 0 & \sigma_{\parallel} \end{array} \right)$$

where σ_{\parallel} and σ_{\perp} are real and independent of frequency. The symbol \perp refers to the $(\mathbf{\hat{x}}, \mathbf{\hat{y}})$ direction and the symbol \parallel to the $\mathbf{\hat{z}}$ direction in a Cartesian coordinate system.

- (a) Find the dispersion relation $k = k(\omega)$ for an electromagnetic wave with O-mode (ordinary mode) polarization with the k vector along $\hat{\mathbf{x}}$.
- (b) Write an expression for the damping decrement $k_I = \text{Im } k$ in the limit of high frequency.
- (c) If the amplitude of the electric field is E_0 at x = 0, find the time-avaraged power per unit volume delivered to this medium at the location x > 0. (No need to write down k_I explicitly.)

Two small pieces of uncharged, continuous, polarizable matter (for example, glass) are placed in a region in which there is an externally generated, uniform field E_0 . The two small pieces of matter have volumes V_1 and V_2 and electrical susceptibilities χ_1 and χ_2 , respectively. If they are separated by a distance d, such that $d^3 \gg V_1$ and $d^3 \gg V_2$, find the energy associated with the interaction between the two pieces (that is, the part of the energy that depends on d.)

A pulsar emits bursts of radio waves, which are observed from Earth at two different frequencies, say ω_1 and ω_2 . An astronomer notes that the arrival time of the bursts is delayed at the lower frequency: the pulse at ω_1 arrives after the pulse at ω_2 . The delay, τ , is due to dispersion in the interstellar medium. Assuming this medium consists of ionized hydrogen, estimate the distance s of the pulsar from the earth, as follows:

(a) Show that the electron plasma frequency for the dilute plasma — consisting of (heavy) ions and free electrons — is

$$\omega_p = \left(\frac{4\pi N e^2}{m_e}\right)^{1/2}$$

in e.s.u. Here N is the number of electrons per unit volume.

(b) Show that the index of refraction of the plasma is

$$n = \sqrt{\epsilon} = \left(1 - \frac{{\omega_p}^2}{{\omega}^2}\right)^{1/2}$$

Hint: Write the equation of motion for a free electron in an oscillating $(e^{-i\omega t})$ electric field and find the plasma's polarizability χ . Then $\epsilon = 1 + 4\pi\chi$.

(c) From the relation above find the group velocity of the light, and use this result to find the distance to the pulsar. (You may assume the frequencies are large compared to ω_p .)

A thin copper circular ring (conductivity σ , mass density ρ_m) is suspended so it can rotate freely about one diameter. There is a uniform magnetic field **B** perpendicular to the axis of rotation. The initial rotation frequency is ω_0 . Calculate the time it takes for the frequency to decrease to 1/e of its original value, assuming the energy all goes into Joule heating. (Assume the requested time τ is large compared to the rotation period.)

An infinitely long cylinder of radius a exhibits a permanent magnetization with its magnetization vector given by

$$\mathbf{M}(\mathbf{r}) = \alpha r^2 \hat{\mathbf{z}} \quad r \le a$$
$$\mathbf{M}(\mathbf{r}) = 0 \qquad r > a$$

where α is a constant, r is the (cylindrical) radial coordinate and $\hat{\mathbf{z}}$ is a unit vector along the axis of the cylinder.

(a) Find the magnetic vector field **B** for r < a and for r > a.

Hint: In cylindrical coordinates

$$(\mathbf{\nabla} \times \mathbf{F})_{\phi} = \frac{\partial F_r}{\partial z} - \frac{\partial F_z}{\partial r}$$

(b) Determine the value of

along a circular path of radius b > a, encircling (in the $\hat{\phi}$ direction) and concentric with the magnetized cylinder. **A** is the magnetic vector potential.

- (c) Find the force per unit volume experienced by the material at a location r < a.
- (d) What will happen to the cylinder if α is suddenly increased to a very large value?

The hydrogen molecule comes in two forms, in which the spin degrees of freedom of the two protons are in a spin triplet state (the "ortho" case) or in a spin singlet state (the "para" case) respectively. The rotational energies of a hydrogen molecule are given by

$$E(L) = \frac{\hbar^2}{2I}L(L+1)$$

with I the moment of inertia and L the orbital angular momentum quantum number.

- (a) In the ortho case, only odd L values are allowed and in the para case only even values. Why?
- (b) Assuming that Boltzmann statistics are valid, find an expression for the specific heat of an ideal gas of hydrogen molecules for both the low temperature and the high temperature limits.
- (c) Suppose protons were bosons instead of fermions. What would the low-temperature specific heat be then?

Consider a classical system of N nonrelativistic charged particles in the presence of a constant external magnetic field $\mathbf{B} = \nabla \times \mathbf{A}$ at temperature T.

- (a) Write down the partition function for the system.
- (b) Compute the induced magnetization of the system along the direction of **B**. From this you can answer the question whether paramagnetism occurs in classical physics.