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1 Lorentz Transformations

We will assume that the reader is familiar with the Lorentz Transformations
for a boost in the x direction

x̄ = γ(x− vt)

ȳ = y

x̄ = z

t̄ = γ
(
t− v

c2
x
)

(where γ = 1/
√

1− β2 and β = v/c) and the thought experiments used to
derive them. These equations contain all the geometrical information in the
Special Theory of Relativity1 We will take an axiomatic approach in this paper
with these equations as our axioms. We will use the convention that v is the
velocity of a moving reference frame and u is the velocity of a particle under
consideration (except in the next section where they are the same).

2 Proper Time

Suppose an object is traveling at a velocity v along the x-axis in our reference
frame, starting from the origin at time t = 0. Then in our coordinates the
location of the object at time t is given by x = vt, y = 0, z = 0, and t = t.
By performing a Lorentz transformation to the object’s coordinates we get x̄ =
0, ȳ = 0, z̄ = 0, and

t̄ = γ

(
t− v2

c2
t

)
= γ

t

γ2
=

t

γ

This means that during a time interval of length t in our reference frame, the
object only traverses a smaller time interval t̄ = t/γ. So the rate of flow of time
in a moving reference frame is diminished by a factor of γ with respect to the

1This statement is from Griffiths page 496.
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stationary reference frame.2 For an infinitesimal interval of time dt, we write
the corresponding interval in the moving frame as

dτ =
dt

γ

where τ is the proper time, which measures time in the moving reference
frame.

3 Events

Lorentz transformation transform four distinct components, three space and
one time. So if we wish to represent the transformations as operators on a
vector space, then we will have to use a 4-D vector space, called Minkowski
space, which is a 4-D pseudo-Riemann manifold. A manifold is basically a
space that is locally Euclidean and a Riemann manifold is characterized by
having a smoothly varying inner product. The “pseudo” here is included to
indicate that we will not be using a true inner product, even though it is called
one by physicists. In order to have all dimensions of the space have the same
dimensions, we multiply the time dimension by the speed of light, c. Minkowski
space can be thought of as a simple 4-D Cartesian space – there is nothing
special about the space itself, it is the operations that we define on it that are
special.

An event is a vector element of this space. This term entices one away from
the abstraction, perhaps “Minkowski vector” would be a better term. But this
is not the same thing as a 4-vector because 4-vectors are more general. An event
can be written as

(x0, x1, x2, x3) = (ct, x, y, z) = (ct,x)

The Lorentz transformation equations in Minkowski space are obtained by re-
placing all occurrences of t and t̄ with x0/c and x̄0/c respectively to account for
the rescaling of the time axis.

x̄0 = γ
(
x0 − βx1

)
x̄1 = γ

(
x1 − βx0

)
x̄2 = x2

x̄3 = x3

The equations take on a more symmetrical form, reflecting the added symmetry
in the dimensions of the four dimensions.

2The rate of flow must be uniformly diminished because nothing is changing during the
interval, so there is no cause for the scale factor to vary.
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4 4-Vectors and Contraction

We now define a 4-vector to be any set of four components that transform in
the same manner as an event under Lorentz transformations. 3 For an event,
the components correspond directly to the components of a point in Minkowski
space, but the components of a 4-vector can be anything, like velocity, energy,
current, electric potential, and so on. We may write a 4-vector as

aµ = (a0, a1, a2, a3) = (a0,a)

We now define the contraction of two 4-vectors aµ and bµ as

aµ · bµ = −a0b0 + a1b1 + a2b2 + a3b3

This is what we use to replace the inner product on our space, so we might call
it a pseudo-inner product, but it is not a true inner product because it does not
satisfy the requirement of positivity. For notational convenience we define the
covariant 4-vector aµ which differs from the contravariant 4-vector aµ only
in the sign of the zeroth component

aµ = (a0, a1, a2, a3) ≡ (−a0, a1, a2, a3)

Then Einstein summation notation allows us to write

aµ · bµ = aµbµ = aµbµ

This definition of contraction is used because it has the very special property
that every contraction of two 4-vectors is invariant under Lorentz transforma-
tions. Let’s check that now.

āµb̄µ = −ā0b̄0 + ā1b̄1 + ā2b̄2 + ā3b̄3

= −γ
(
a0 − βa1

)
γ

(
b0 − βb1

)
+ γ

(
a1 − βa0

)
γ

(
b1 − βb0

)
+ a2b2 + a3b3

= γ2
(
−a0b0 +�

��
βa1b0 +�

��
βa0b1 − β2a1b1 + a1b1 −�

��
βa0b1 −�

��
βa1b0 + β2a0b0

)
+a2b2 + a3b3

= γ2
(
β2 − 1

) (
a0b0 − a1b1

)
+ a2b2 + a3b3

= −a0b0 + a1b1 + a2b2 + a3b3

= aµbµ

This only proves it for boosts in the x direction, but since no other directional
assumptions were made, the x axis can be taken to point in any arbitrary
direction.

Question: What is the concept behind the reason why this works out? Why
should the time component be negated?

3Definition from Griffiths page 501
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5 Specific 4-Vectors

Let’s try to find some 4-vectors. The easiest way to do this is to start from the
most trivial example of a 4-vector, an event. An event

xµ = (ct,x)

is clearly a 4-vector because an event must transform like an event under Lorentz
transformations. Since we are in a vector space,

Any linear combination of 4-vectors is a 4-vector.

(we did not prove that it is a vector space here). Be careful not to think that γ
or β can be used as the constant coefficients in the linear combination because
they are not constant with respect to Lorentz transformations. Recall that
Minkowski space is just a normal Cartesian space, so when we add 4-vectors the
components just add.

Now notice that

dτ2 = dt2/γ2 = (1− β2)dt2 = dt2 − dx2/c2 = −xµxµ/c2

so the square of the proper time is a Lorentz invariant. But then we also have

dτ ′ = dτ

since it cannot flip its sign since that would mean time was going backwards,
which doesn’t happen. Therefore the proper time dτ is a Lorentz invariant and
therefore it is a constant for a given situation.4 This means that we can multiply
and divide 4-vectors by dτ to obtain new 4-vectors. Now, daµ is a 4-vector since
it is a linear combination of two 4-vectors so if we divide this by dτ we obtain
the proper-time derivative. Therefore

The proper-time derivative of a 4-vector is a 4-vector.

But the normal-time derivative of a 4-vector is not a 4-vector.
So we automatically know that the proper velocity 4-vector or 4-velocity

Uµ =
dxµ

dτ
= γ

dxµ

dt
= γ

(
d(ct)
dt

,
dx
dt

)
= (γc, γu)

is a 4-vector.5

Now what we really want to find is the relativistic momentum and energy.
But how are these quantities defined? We can’t really get the answer from
classical mechanics, but we can take a look at classical mechanics to see how
they did it back then. Newton defined momentum as mass times velocity. His

4I would like a better conceptual explanation for why all observers measure the same proper
time.

5Note the sloppy use of differentials. This is known as non-standard analysis and it has
been shown to be correct.
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laws implies that momentum was conserved, but they gave no reason for the
definition of momentum, that was based on experimental evidence. So if the
definition of momentum is not exactly right, then its not obvious how to fix it.
What really is the definition of momentum? Rather than defining a quantity
by its expression, a more abstract and versatile method is to define it in terms
of the properties that you want it to have. Therefore momentum should be
defined as a conserved dynamical vector quantity proportional to the velocity
of a particle. Here, dynamical means that it can only depend on dynamical
quantities such as position, velocity, acceleration, mass, energy, and so on. So
using some arguments based on an elastic collision between two particles viewed
from different reference frames, one can find that

p = γmu

is the proper relativistic definition of momentum. The only assumptions that
go into this are the Lorentz transformation equations (I think).6 Feynman
points out in Volume I that after you realize that the mass m is replaced by
the relativistic mass γmo in the classical equations then you are all set with
relativistic dynamics.

Now, the classical formalism proves that energy is conserved when momen-
tum is defined as p = mu. But the derivation never requires that mass is
constant (you never have to use F = ma, you can just use F = dp/dt), so
the equivalent relativistic energy defined from this relativistic momentum will
also be conserved. Again, we define energy abstractly as the conserved scalar
dynamical quantity. So now we derive the expression for the relativistic energy.
For this section we will use the relativistic mass

m = γm0

Now consider motion in one dimension. Notice that

dm

dv
=

m0v/c2

(1− v2/c2)3/2
=

v

c2 − v2
m

F =
dp

dt
=

d(mv)
dt

=
dm

dt
v + m

dv

dt
=

dm

dt
v +

c2 − v2

v

dm

dv

dv

dt

=
dm

dt
v +

c2 − v2

v

dm

dt

⇒ dE = Fdx = v2dm + (c2 − v2)dm = dmc2

⇒ E = mc2 + C

But when m0 = 0, m = 0 and E = 0 since there is no particle there, so C = 0.
Therefore

E = mc2

6See http://www.geocities.com/physics world/sr/inertial mass.htm
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or in our normal notation
E = γmc2

When you see the famous E = mc2, the m is supposed to be the relativistic
mass. 7

Since we can multiply by a constant and still get a 4-vector, we multiply the
4-velocity by the rest mass m to get the momentum 4-vector

pµ = (γmc, γmu) =
(

E

c
,p

)
This has been derived for massive particles and the expressions p = γmu and
E = γmc2 only apply to massive particles, but the last expression for pµ is true
even for photons. However, we haven’t derived this, it is just fortunate that it
works out to be correct for massless particles also.

Question: Does invariance of pseudo-length (contraction with itself) under
arbitrary Lorentz transformations imply an object is a 4-vector? It seems that
many four vectors are defined by a correspondence between the expression for
their pseudo-length and some universal law. It would be nice if the answer to
this question was yes and we had a proof of it because then we could derive

Jµ = (cρ,J) and Aµ = (Φ,A)

Question: Is there an algorithm for checking whether a given four component
set is a 4-vector? So far the best I can tell you is to first cancel off all constants
and Lorentz invariants, including the rest mass m, c, and dτ since they won’t
affect the answer. Then if the rest is a linear combination of 4-vectors you have
a 4-vector. Otherwise I don’t know what to do next.

6 Invariant Quantities

Uµ = (γc, γu) ⇒ UµUµ = −γ2c2 + γ2u2 = γ2c2(u2/c2 − 1) = −c2

⇒ UµUµ = −c2

pµ =
(

E

c
,p

)
⇒ pµpµ = −E2

c2
+ p2

pµ = mUµ ⇒ pµpµ = m2UµUµ = −m2c2

⇒ E2 = p2c2 + m2c4

So relativistic momentum and energy themselves are not Lorentz invariant,
but the particular combination of them in pµpµ is equal to −m2c2, which is a
constant, so that quantity is Lorentz invariant.

7Derivation of E = mc2 from the rest mass relation was found at http://www.

karlscalculus.org/einstein.html
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