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1 Input

We will be going through the derivation of the angular momentum operator
algebra. The only inputs to this mathematical formalism are the basic assump-
tions of quantum mechanics operators and the commutation relation between
the components of angular momentum.

Axiom 1.1. [Ji, Jj ] = i~
∑

k εijkJk or J× J = i~J

Since this is the only input, any operators that satisfy these commutation
relations will obey the same algebra. The simple harmonic oscillator has a
similar commutator and a similar algebra.

2 Setup

Before we start deriving the algebra, it is nice to do a little setup to make the
work easier. First we define the square of the total angular momentum

Definition 2.1. J2 = J2
x + J2

y + J2
z

and we pull a trick by defining the raising and lowering operators

Definition 2.2. J± = Jx ± iJy

Now we pre-compute all the commutation relations that we will need.

Lemma 2.3. [J2, Ji] = 0

Proof. We use the commutator identity [A,BC] = [A,B]C + B[A,C]

[J2, Jz] = [J2
x + J2

y + J2
z , Jz] = [J2

x , Jz] + [J2
y , Jz] = −[Jz, J

2
x ]− [Jz, J

2
y ]

−[Jz, Jx]Jx − Jx[Jz, Jx]− [Jz, Jy]Jy − Jy[Jz, Jy]

= −i~JyJx − i~JxJy + i~JxJy + i~JyJx = 0

Similarly we can obtain the same result for Jx and Jy so we have [J2, Ji] = 0.
∗This lecture is mostly based on Sakurai section 3.5 with some additions from Shankar

chapter 12.
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Lemma 2.4. [J2, J±] = 0

Proof.
[J2, J±] = [J2, Jx ± iJy] = [J2, Jx]± i[J2, Jy] = 0

Lemma 2.5. [Jz, J±] = ±~J±

Proof.
[Jz, Jx ± iJy] = [Jz, Jx]± i[Jz, Jy] = i~Jy ± i(−i~Jx)

= ~(±Jx + iJy) = ±~(Jx ± iJy) = ±~J±

Lemma 2.6. [J+, J−] = 2~Jz

Proof.
[J+, J−] = [Jx + iJy, Jx − iJy] = i[Jy, Jx]− i[Jx, Jy]

= ~Jz + ~Jz = 2~Jz

Finally we establish a maximal basis of commuting observables using J2 and
Jz. We write the simultaneous eigenkets as |a, b〉 with the following eigenvalue
equations:

J2|a, b〉 = a|a, b〉 and Jz|a, b〉 = b|a, b〉

Note that we are not trying to say that a and b are integers, they are just
the eigenvalues.

3 Applying J±

What happens when we apply J±? The operators J± were specially defined
so that they would generate new simultaneous eigenkets from the simultaneous
eigenkets. They do so in such a way that they form a ladder of states.

Theorem 3.1. J±|a, b〉 = c±|a, b± ~〉

Proof.

Jz(J±|a, b〉) = ([Jz, J±] + J±Jz)|a, b〉 = (±~J± + J±b)|a, b〉 = (b± ~)(J±|a, b〉)

J2(J±|a, b〉) = J±J2|a, b〉 = a(J±|a, b〉)

Therefore the state J±|a, b〉 is the state with J2 eigenvalue a and Jz eigenvalue
b ± ~, unless if it is zero. Since the eigenstates of J2 and Jz form a basis,
this state is determined up to a constant coefficient. Thus we have the result
J±|a, b〉 = c±|a, b± ~〉
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4 Restriction on the Jz Eigenvalues

Theorem 4.1. There are eigenvalues bmax and bmin of Jz such that J+|a, bmax〉 =
0 and J−|a, bmin〉 = 0

Proof.
〈a, b|J2 − J2

z |a, b〉 = 〈a, b|J2
x + J2

y |a, b〉 ≥ 0

⇒ a− b2 ≥ 0 ⇒ a ≥ b2

So there is a bound to the magnitude of b for a given a, which means that
after some finite number of applications of the ladder operators, the zero state
will arise. This is the statement of the theorem. Note that we are not saying
b2
max = a or b2

min = a.

Theorem 4.2. The eigenvalues are related by a = bmax(bmax + ~)

Proof.
J−(J+|a, bmax〉) = J−(0) = 01

(J2
x + J2

y − i(JyJx − JxJy))|a, bmax〉 = 0

(J2 − J2
z + i[Jx, Jy])|a, bmax〉 = 0

(J2 − J2
z − ~Jz)|a, bmax〉 = 0

a− b2
max − ~bmax = 0

a = bmax(bmax + ~)

Theorem 4.3. The eigenvalues are related by a = bmin(bmin − ~)

Proof.
J+(J−|a, bmin〉) = J+(0) = 0

(J2
x + J2

y + i(JyJx − JxJy))|a, bmin〉 = 0

(J2 − J2
z − i[Jx, Jy])|a, bmin〉 = 0

(J2 − J2
z + ~Jz)|a, bmin〉 = 0

a− b2
min + ~bmin = 0

a = bmin(bmin − ~)

Theorem 4.4. bmin = −bmax

1Because all the operators are linear and linear operators on zero produce zero.
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Proof. We are assuming a fixed a eigenvalue. By the last two theorems we find

bmax(bmax + ~) = bmin(bmin − ~)

b2
max + bmax~ = b2

min − bmin~
b2
min − b2

max = ~(bmax + bmin)

(bmin + bmax)(bmin − bmax) = ~(bmax + bmin)

⇒ bmax + bmin = 0 or bmin − bmax = ~
Since the second is impossible, the first must be true, so bmin = −bmax.

Theorem 4.5. The eigenvalue b divided by ~ is either integer of half-integer.

Proof. There must be a finite number n of steps on the ladder between the top
and bottom states, so

bmax = bmin + n~
bmax = −bmax + n~

bmax =
n~
2

bmax

~
=

n

2

Remark 4.6. Orbital angular momentum only generates integer angular momen-
tum because of the properties of the differential operator. But the commutation
relation that we started with also allows half integer angular momentum. Nature
does take advantage of this possibility with spin.

5 Redefining State Labels

It is convenient to label the states with integer or half integer quantities related
to the eigenvalues rather than with the eigenvalues themselves. Let j = bmax/~
and m = b/~. Then we have a = bmax(bmax + ~) = ~j(~j + ~) = ~2j(j + 1) and
b = ~m. So the eigenvalue equations are now

J2|j, m〉 = ~2j(j + 1)|j, m〉

Jz|j, m〉 = ~m|j,m〉

6 Uniqueness

It is important to show that the ladder we created is unique or else we don’t
know if there are other states in unconnected ladders.

Theorem 6.1. The ladder formed by applying J− to |a, bmax〉 is unique.

Proof. Any bounded ladder has bmax determined as in Theorem 4.2, so any
other ladder must overlap with this ladder exactly, hence it is unique.
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7 Matrix Elements of J±

Theorem 7.1. J±|j, m〉 = ~
√

j(j + 1)−m(m± 1)|j,m± 1〉

Proof.
〈j,m|J†±J±|j,m〉 = 〈j, m|J∓J±|j, m〉

= 〈j, m|J2 − J2
z ∓ ~Jz|j,m〉

= ~2[j(j + 1)−m2 ∓m]

= ~2[j(j + 1)−m(m± 1)]

But we also have

〈j, m|J†±J±|j, m〉 = 〈j,m± 1|c∗±c±|j, m± 1〉 = |c±|2

⇒ c± = ~
√

j(j + 1)−m(m± 1)

⇒ J±|j, m〉 = ~
√

j(j + 1)−m(m± 1)|j,m± 1〉

Remark 7.2. If you need to find the expectation value of Jx or Jy, it may be
easiest to express them in terms of J± and use the matrix element formula.
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