
Blackbody Radiation

Chris Clark

July 27, 2006

1 Introduction

An object that absorbs all electromagnetic radiation incident upon it is called
a blackbody. Kirchoff’s Law states that for a body in thermal equilibrium,
the emissivity is equal to the absorptivity. This is a simple consequence of
the fact that a body cannot be in thermal equilibrium unless if it is absorbing
and emitting equal amounts of energy. Kirchoff’s Law tells us that blackbodies
are also perfect emitters and therefore they have the simplest emission spectrum
since it does not have any gaps in frequency where it is unable to emit radiation.
All bodies in the real world have some quantizes emission spectrum and the
blackbody spectrum is basically an envelope for the quantized energy spectrum.

A small hole in an object with a large cavity with low reflectivity produces
the closest approximation to an ideal blackbody spectrum. The reason is that
any light that enters the hole will have to reflect off the walls many times before
it can escape through the hole, but there is only a very high probability that the
light will be absorbed before this happens. Therefore, radiation leaving from
the hole will almost certainly be from thermal emission. The concept here is
that the reason things sometimes do not look like blackbodies is because the
light you see has residual influences from the incident radiation.

The study of the blackbody spectrum is important because it was the first
problem in physics to introduce quantization. Planck introduced his famous
constant in order to resolve the ultraviolet catastrophe of the classical Rayleigh-
Jeans blackbody spectrum.

Why do we count number of states if we are looking at thermal emission?
There is a tricky argument based on detailed balance. If the body were to be in
thermal equilibrium in the center of some cavity, then what temperature would
have to prevail?

2 Energy Density

The density of states with a factor of two for polarization is

ρ(ω)dω = 2
1
8
d3n = 2

1
8
4πn2dn
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and we have
ω = ck =

cπ

L
n ⇒ ρ(ω)dω =

V

π2c3
ω2dω

Let ρu be the density of states in a unit volume,

ρu(ω)dω =
1

π2c3
ω2dω

We want to find the average energy density due to radiation with angular fre-
quency ω in a cavity at temperature T . So we need to average over all possible
numbers of photons with the specified frequency, n. 1

energy
d3k-volume

(k) =
energy
particle

(k) · particles
state

(k) · states
d3k-volume

(k)

Note that a state here refers to a specific standing wave mode, which corresponds
to a specific frequency of radiation.

E(ω) dω = ε1(ω)n(ω)ρ(ω) dω

The energy density is found by setting the spatial volume V → 1, which is what
we did in ρu.

u(ω) dω = ε1(ω)n(ω)ρu(ω) dω

Note that ρu is just a scale factor for the dω and at one specific frequency we
actually have the simple expression ε(ω) = ε1(ω)n(ω), which implies ε̄(ω) =
ε1(ω)n̄(ω) since ε1(ω) = h̄ω is just a constant.

ū(ω) dω = ε̄(ω)ρu(ω) dω

Therefore our next step is to calculate the average energy of a standing wave
of arbitrary frequency over all its excited states. First we will do it classically.
In classical thermodynamics, energy is a continuous parameter, so we integrate
over all positive energies. The probability of a specific excited mode occurring
is given by the Boltzmann factor

Pn(ω) ∝ e−βε

Therefore, the weighted average of energies is

ε̄ =

∫∞
0

ε e−βε dε∫∞
0

e−βε dε

=

∫∞
0
− ∂

∂β e−βε dε∫∞
0

e−βε dε

1In Quantum Field Theory, photons are created and destroyed with operators analogous
to the simple harmonic oscillator raising and lowering operators. So a system of photons in a
cavity is analogous to a simple harmonic oscillator. One notable difference is that the ground
state energy needs to be normalized away because ε = nh̄ω instead of ε = (n + 1/2)h̄ω.
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= − ∂

∂β
ln

(∫ ∞

0

e−βε dε

)

= − ∂

∂β
ln

(
− 1

β
e−βε

∣∣∞
0

)

= − ∂

∂β
ln

(
1
β

)

=
∂

∂β
ln(β) =

1
β

= kT

According to Eisberg and Resnick, this is a form of the equipartition theorem.
However this gives us an energy density

ū(ω; T ) dω = ρu(ω)ε̄(ω) dω =
1

π2c3
kTω2 dω

which blows up to infinite quadratically for large frequencies. This clearly vi-
olates conservation of energy and the experimental data, so it was called the
ultraviolet catastrophe.

The fix to this catastrophe was provided by Planck when he postulated that
the energies of excited modes were quantized. We must think of the standing
waves in the cavity as quantum simple harmonic oscillators with energy εn(ω) =
nh̄ω. The probabilities of each excited mode are still given by the Boltzmann
factor, but now we have to do an infinite sum over energies instead of an integral.

ε̄ =
∑∞

n=0 εn(ω)e−βεn(ω)

∑∞
n=0 e−βεn(ω)

=

∑∞
n=0− ∂

∂β e−βεn(ω)

∑∞
n=0 e−βεn(ω)

= − ∂

∂β
ln

( ∞∑
n=0

e−βεn(ω)

)

= − ∂

∂β
ln

( ∞∑
n=0

e−βnh̄ω

)

= − ∂

∂β
ln

(
1

1− e−βh̄ω

)

=
∂

∂β
ln

(
1− e−βh̄ω

)

=
1

1− e−βh̄ω
e−βh̄ωh̄ω

= h̄ω
1

eβh̄ω − 1
which is the Planck distribution function.
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Inserting into the expression for energy density,

ū(ω;T ) dω = ρu(ω)ε̄(ω) dω =
1

π2c3

h̄ω3

eβh̄ω − 1
dω

It is useful to introduce the dimensionless parameter η = βh̄ω.

ū(ω;T ) dω =
h̄

π2c3

(
kT

h̄

)4
η3

eη − 1
dη

This function of η is maximized for η = η̃ ≈ 3. Therefore we have

η̃ = β1h̄ω̃1 = β2h̄ω̃2 ⇒ ω̃1

T1
=

ω̃2

T2

This is called Wien’s displacement law.
We can get the total energy density by integrating over all frequencies.

ū0(T ) =
∫ ∞

0

ū(ω; T ) dω =
π2

15
(kT )4

(ch̄)3

This is not yet the Stefan-Boltzmann law, even though Reif calls it that. The
Stefan-Boltzmann law says that the power radiated from a blackbody is σT 4.

However, we can now get a good picture of how the energy density vs.
frequency curve morphs with changing temperature.

The peak shifts rightward linearly with temperature and upward with the
fourth power of temperature.
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