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1 Introduction

Partition functions are useful because it is easy to derive expectation values of
parameters of the system from them. Below is a list of the major examples.

E = −∂ ln(Z)
∂β

p = kT
∂ ln(Z)

∂V

S = k ln(Z)− kβ
∂ ln(Z)

∂β

CV = kβ2 ∂2 ln(Z)
∂β2

F = −kT ln(Z)

α =
∂ ln(Z)

∂N

µj = −kT
∂ ln(Z)
∂Nj

You can see that every parameter can be expressed in terms of ln(Z) and
this is the simplest expression for most parameters. Be careful when deriving
the expression for pressure, it is not the derivative of E as is often the case.

p = −
(

∂E

∂V

)
S

6= −
(

∂E

∂V

)
T,V,N

We will derive these in a systematic way in this paper.
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2 Boltzmann Factor and Partition Function

Consider a system A in thermal contact with a reservoir at temperature T with
combined energy Eo. Let subscript r refer to the reservoir, o refer to the total
system and no subscript refer to the system A. 1

Pj =
ωr(Eo − Ej)

ωo(Eo)

=
eSr(Eo−Ej)/k

eSo(Eo)/k

By expanding the entropy in powers of a small energy, the top exponent becomes

Sr(Eo − Ej) = Sr(Eo − E + E − Ej)

∼= Sr(Eo − E) + (E − Ej)
∂S

∂E

∣∣∣∣
Eo−E=Er

= Sr(Eo − E) + (E − Ej)/T

And by the additivity of entropy the bottom exponent can be written as

So(Eo) = S(E) + So(Eo − E)

Therefore

Pj =
eSr(Eo−E)/k+(E−Ej)/kT

eS(E)/k+Sr(Eo−E)/k

=
e(E−Ej)/kT

eS(E)/k

= e(E−TS)/kT e−Ej/kT

= eβF e−βEj

So when we apply the normalization condition∑
j

Pj = 1⇒ eβF
∑

j

e−βEj = 1

we see that the quantity defined by

Z ≡
∑

j

e−βEj

which we call the partition function, satisfies

Z = e−βF

The partition function is so named according to Wikipedia because “it en-
codes how the probabilities are partitioned among the different microstates,

1This section is from Callen Page 350.
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based on their individual energies.” The letter Z stands for Zustandssumme,
which is German for “sum of states.” It is worth noting that the sum must be
taken over all quantum states and not over all allowed energies since there may
be degeneracies.

It is extremely important to understand that the whole partition function
formalism is built on the assumption of a canonical ensemble, which means that
the system is in contact with a thermal reservoir. Therefore, if you want to
use the partition function at all, then you must be sure that your system is
in contact with some kind of thermal reservoir, unless if the system remains in
thermal equilibrium at a constant temperature. In that case the reservoir would
have no effect and so it is not necessary. Thermal reservoirs come in many forms.
For example electromagnetic radiation can act as a thermal reservoir, however
usually thermal interactions occur via particle collisions.

3 Derived Quantities

Z is always a function of the complete set T, V,N , so you cannot determine
these parameters from Z. You do not need to write the notation for keeping
T ,V , or N constant when taking derivatives of Z because these parameters are
already assumed constant. Since these parameters are a complete set, no other
parameters may be held constant or the system would be overdetermined. That
is why we could not find the pressure by taking the volume derivative of energy
– we could not hold entropy constant.

Of the four types of energy (E,F,G,H), the Helmholtz free energy F is
the one that considers T and V as independent parameters. Note that all four
consider N a constant parameter. Therefore only in terms of F can we create
a fundamental relation with Z. This fundamental relation2 is

Z ≡
∑

r

e−βEr = e−βF

So what is the best way to remember all of the expressions for quantities
derived from the partition function? Memorize this fundamental relation and
how to use the Helmholtz free energy to derive the rest. Remember that F =
E − TS and start from the fundamental thermodynamic relation.

dE = TdS − pdV

dE = d(TS)− SdT − pdV

d(E − TS) = dF = −SdT − pdV

dF =
(

∂F

∂T

)
V

dT +
(

∂F

∂V

)
T

dV

⇒ S = −
(

∂F

∂T

)
V

and p = −
(

∂F

∂V

)
T

2This is from Callen Pg 352
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Let’s starting deriving the relations. We automatically get

F = −kT ln(Z)

Using the new partial derivatives,

S = k
∂(T ln(Z))

∂T
= k ln(Z) + kT

∂ ln(Z)
∂T

= k ln(Z) + kβ
∂ ln(Z)

∂β

p = kT
∂ ln(Z)

∂V

Now we can get µj from µj =
(

∂F
∂Nj

)
T,V,N

µj = −kT
∂ ln(Z)
∂Nj

Then α = −βµ so,

α =
∂ ln(Z)

∂N

We can even get the energy if we use some trickery.

E = F + TS = F − 1
kβ

∂F

∂T
= F + β

∂F

∂β
=

∂(βF )
∂β

= −∂ ln(Z)
∂β

And finally the heat capacity at constant volume comes from CV =
(

∂E
∂T

)
V

.

CV = kβ2 ∂2 ln(Z)
∂β2

4 Probability Explanation

Let’s look at this from another angle. The partition function formalism works
because it produces the probabilities of states to make an expectation value
summation. 3

Pj = Ce−βEj =
e−βEj∑
j e−βEj

=
e−βEj

Z

E =
∑

j

PjEj =
∑

j

e−βEj

Z
Ej =

1
Z

∑
j

e−βEj Ej

=
1
Z

∑
j

− ∂

∂β

(
e−βEj

)
= − 1

Z

∂Z

∂β
= −∂ ln(Z)

∂β

Similarly for E2,

E2 =
1
Z

∂2Z

∂β2

3This section taken from Reif Pg 212
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This can be rewritten as

E2 =
∂

∂β

(
1
Z

∂Z

∂β

)
+

1
Z2

(
∂Z

∂β

)2

= −∂E

∂β
+ E

2

Therefore the fluctuation in energy is

(∆E)2 = E2 − E
2

= −∂E

∂β
=

∂2 ln(Z)
∂β2

5 General Parameter

If the microstate energies all depend on a parameter λ by

Er = E(0)
r + λA

where E
(0)
r does not depend on λ, then the expectation value of A is

A =
1
Z

∑
r

Ae−β(E(0)
r +λA)

=
1
Z

∑
r

− 1
β

∂

∂λ
e−β(E(0)

r +λA)

= −kT
∂ ln(Z)

∂λ

You can also be really tricky and use this to find the expectation values of
quantities that are not in the Hamiltonian by artificially adding them in and
setting λ→ 0 at the end. 4

6 Momentum Integral Approximation

Since momentum is found in every Hamiltonian that refers to a particle, it is very
common that you have to sum over momentum states in a partition function.
The reason that the sum is not infinite is because momentum is always quantized
inside any container. In thermodynamics we always have a volume V , which tells
us the size of our container. We want to approximate the sum over momentum
states with an integral, which will be much easier to handle. However, in order
to derive the integral, we will have to assume the container is a cubical box.
As it turns out, the result is independent of the shape of the container, even
though the only evidence I have is an equation from classical thermodynamics.

p = h̄k = h̄

√(πnx

L

)2

+
(πny

L

)2

+
(πnz

L

)2

4This section came from Wikipedia’s article: Partition Function
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=
h̄π

L

√
n2

x + n2
y + n2

z

So the partition function for the simple Hamiltonian H = p2/2m is

Z =
∑

j

e−βEj =
∑

j

e−βp2
j/2m

=

∑
j

e−βh̄2π2(nx)2j/2mL2

3

=
[∫ ∞

0

e−βh̄2π2n2
x/2mL2

dnx

]3

=
[∫ ∞

0

e−βp2
x/2m d

(
L

h̄π
px

)]3

=
V

π3h̄3

[∫ ∞

0

e−βp2
x/2m dpx

]3

=
V

2π3

1
h̄3

∫ ∞

−∞
e−β(p2

x+p2
y+p2

z)/2m dpx dpy dpz

In the last line the momentum takes on its classical meaning as the components
of the momentum vector, whereas before it was a positive quantity based on the
quantum wave function.

This result is true for arbitrary shaped containers because the classical ex-
pression for the partition function is 5

Z =
1
h3

∫
e−βHdx dy dz dpx dpy dpz

7 Grand Canonical Partition Function

• Microcanonical Ensemble - ensemble of isolated systems, can be used to
derive the expression for entropy

• Canonical Ensemble - ensemble of systems that can exchange thermal
energy with a reservoir, can be used to derive the Boltzmann factor and
the partition function formalism

• Grand Canonical Ensemble - ensemble of systems that can exchange both
thermal energy and particles with a reservoir

8 Quantum Statistics

I think that you are supposed to use the same expression for the partition
function when dealing with quantum statistics.

5This is Callen (16.68) or Reif 7.12)
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