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1 Waveguides

Waveguide problems are split into three cases based on the type of wave. The
type of wave is specified as either TE (Transverse Electric),TM (Transverse
Magnetic), or TEM (Transverse Electromagnetic)1. TE has Ez = 0, TM has
Bz = 0, and TEM has both zero.

TM: Bz = 0 TE: Ez = 0 TEM: Ez = Bz = 0 (1)

TEM cannot occur in a completely hollow cavity because the divergence and curl
of the electric field would be zero by Gauss’s Law and Faraday’s Law. However,
TEM modes can exist if there is a wire in the cavity, such as in a coaxial cable.

When developing the mathematics of waveguides we make two simplifying
assumptions.

1. The walls of the waveguide are perfect conductors so we have the boundary
conditions Ez|S = 0 (since the parallel component of E is continuous and
it is zero inside) and B⊥ = 0 or equivalently ∂Bz

∂n

∣∣
S

= 0 (by a subtle
consequence of an equation derived from the Maxwell equations). So the
boundary conditions we use are:

TM: E‖|S = 0 ⇒ Ez|S = 0 TE: B⊥|S = 0 ⇒ ∂Bz

∂n

∣∣∣∣
S

= 0 (2)

2. The electromagnetic wave in the cavity is a monochromatic plane wave so
it can be written as

Ẽ(x, y, z, t) = Ẽ0(x, y)ei(kz−ωt)

B̃(x, y, z, t) = B̃0(x, y)ei(kz−ωt)

∗We need whole lecture to get into wave incidence problems.
†This section comes from Griffiths Quantum Page 65
‡This section comes from Jackson chapter 8 and Griffiths E&M section 9.5.
1Not to be confused with Tunneling Electron Microscope
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Note that in free space the vector Ẽ0 or B̃0 would not have a z component,
but in a closed cavity it does for TE and TM modes.2 This assumption
is reasonable because a non-monochromatic wave can be decomposed into
its monochromatic components and we are usually only concerned with
plane waves rather than wave packets when it comes to waveguides.

Our goal is to find expressions for the time-dependent fields in the cavity. Nat-
urally our starting point is with the sourceless Maxwell’s equations, specifically
the curl equations (which are responsible for creating the wave equation)

∇×E = −∂B
∂t

→ iωB̃ ∇×B = µε
∂E
∂t

→ −iµεωẼ

If we expand these two vector equations into their component equations we
get six equations that contain the components of Ẽ0 and B̃0. You can see that
there will be a factor of ei(kz−ωt) on both sides, which we cancel. Then you can
solve for Ẽ0x, Ẽ0y, B̃0x, and B̃0y in terms of Ẽ0z and B̃0z. This allows you to
substitute back in to the set of six equations to find differential equations that
only contain Ẽ0z(x, y) and B̃0z(x, y):[

∂2

∂x2
+

∂2

∂y2
+ µεω2 − k2

]
ψ = 0

where

ψ =

{
Ẽ0z(x, y), for TM modes;
B̃0z(x, y), for TE modes.

The reason for this choice of ψ is that both Ẽ0z and B̃0z satisfy this equation,
but one of these will be zero, so we eliminate that equation since it does not say
anything new.

To make this equations look simpler, Jackson defines

∇2
t =

∂2

∂x2
+

∂2

∂y2
and γ2 = µεω2 − k2

Therefore the equation we want to solve is

(∇2
t + γ2)ψ = 0 (3)

This is just solving the 2D Helmholtz equation corresponding to a cross-sectional
slice of the wave at a specific time, that is constant z and t.

The general procedure for the problem of finding the electric and magnetic
fields in the cavity is

1. Solve (3) with the boundary conditions in (2).

(∇2
t + γ2)ψ = 0 with TM: Bz = 0 TE: Ez = 0

2Question: Why does the cavity permit non-transverse waves?
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2. Get the transverse components of the same (non-transverse) field using

TM: Ẽ0t = ± ik
γ2
∇tψ or B̃0t = ± ik

γ2
∇tψ

3. Get the transverse components of the transverse field using

TM: B̃0t = ±µεω
k
ẑ × Ẽ0t or TE: Ẽ0t = ±ω

k
ẑ × B̃0t

4. If you need the cutoff frequency, use the definition of γ2 to find the value
of ω below which k becomes imaginary.

k2
c = µεω2 − γ2

c ⇒ ωc =
γc√
µε

Below this frequency the solutions are evanescent waves that have expo-
nentially decaying amplitude.

2 Group Velocity

First of all recall that the phase velocity for a monochromatic wave is simply
the wavelength times the frequency

vp = λf =
2πf
2π/λ

=
ω

k

The group velocity is the velocity that the envelope of the wave travels. It
is also the velocity a quantum particles travels and the velocity that energy
or information travels. We will show that the group velocity for a roughly
monochromatic wave with wave vector near k0 is

vgroup =
dω

dk
(k0)

First we construct a general expression for a wave packet. Each monochro-
matic component has the form

Ψk(x, t) = Aei(kx−ω(k)t)

where the function ω(k) is called the dispersion relation, which in general is
the relation between the energy and momentum of a system.3

However, the wave packet can have an arbitrary combination of wavelengths,
so we integrate over k.

Ψ(x, t) =
∫ ∞

−∞
A(k)ei(kx−ω(k)t)dk

3This definition is from Wikipedia’s article “dispersion relation”.
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So this is our wave packet and we want to determine how fast its envelope is
traveling. The first thing we must do is it assume that A(k) is narrowly peaked
around k = k0. The reason is that if there is a large spread in wavelengths in
the packet, then it will change its shape rapidly, which prevents us from looking
at a group. With this assumption, the integrand is negligible except near k0, so
we Taylor expand w(k) about k0

ω(k) ∼= ω(k0) + (k − k0)ω′(k0)

Let s ≡ k − k0 then

Ψ(x, t) ∼=
∫ ∞

−∞
A(k0 + s)ei[(k0+s)x−(ω(k0)+sω′(k0))t]ds

= ei(k0ω′(k0)t−ω(k0)t)

∫ ∞

−∞
A(k0 + s)ei(k0+s)(x−ω′(k0)t)ds

Whereas, at time t = 0,

Ψ(x, 0) =
∫ ∞

−∞
A(ko + s)ei(k0+s)xds

so we see that

Ψ(x, t) ∼= ei(k0ω′(k0)−ω(k0))tΨ(x− ω′(k0)t, 0)

Therefore
vgroup =

dω

dk
(k0)

Now what about waves that are nowhere near monochromatic? I haven’t
seen or thought of any good method for getting the group velocity in this case,
but here is a little trick for getting an expression for the phase velocity. We are
going to determine the velocity of a specific point at x = x0. The assumption we
make is that for an infinitesimal time interval, the portion of the wave in a small
interval around x0 is smooth and scrolls sideways without changing its shape.
The validity of this assumption will not be discussed. By looking at only the
point x0, we can see Ψ(x0, t) and ∂Ψ

∂x (x0, t) for all times t. With our assumptions
we can conclude that the wave is effectively a straight line at some slope that
is translating sideways past the point x0. So if the line slopes upwards and we
see the value of Ψ is going down, then we conclude that the line is translating
to the right. But we need to calculate the velocity that it is translating at. We
do this by writing the change in Ψ in two different ways:

dΨ =
∂Ψ
∂t
dt and dΨ =

∂Ψ
∂x

dx

where dx is some unknown distance that the wave traveled in the time interval
dt. So we have

vphase =
dx

dt
=

dΨ
dt
dΨ
dx
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= −
∫∞
−∞ ω(k)A(k)ei(kx−ω(k)t) dk∫∞
−∞ kA(k)ei(kx−ω(k)t) dk

= −
∫∞
−∞[

∫ k

0
dω
dk′ (k′) dk′]A(k)ei(kx−ω(k)t) dk∫∞

−∞[
∫ k

o
dk′]A(k)ei(kx−ω(k)t) dk

since ω(0) = 0

= −
∫∞
−∞

∫ k

0
dω
dk′ (k′)A(k)ei(kx−ω(k)t) dk′ dk∫∞

−∞
∫ k

o
A(k)ei(kx−ω(k)t) dk′ dk

= −
〈
∂ω

∂k

〉
for this unique definition of averaging. It is interesting that this resembles the
group velocity expression.
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