
Error Analysis (First Draft)

Chris Clark

June 22, 2006

1 Types of Error

Most of the time when we try to measure some quantity in the physical world
we have the potential for being off by a bit. Under different circumstances, the
error that we are off by may vary greatly, so it is very useful to have a mea-
surement of the quality of the measurement, which we call the error analysis.
First we choose a physical quantity X to determine and then we perform an
experiment which is a set of measurements of this quantity. Each measure-
ment gives a value xi. The outcome OX of the experiment is the set of all
results. Finally, we present the result x̄, which is the average of the results in
the outcome. The true value Xo is the value that would be measured if our
experiment had no error. A good experiment will produce a result very close to
the true value, x̄ ∼= Xo.

Sources of error are commonly classified as either systematic error or random
error. A systematic error is any error that skews the measured values by the
same amount in the same direction every time.1 For example, if you were making
measurements with a stopwatch that always started at 0.01s instead of 0.00s,
then you would have a systematic error. A random error is any error that
is not a systematic error. For example, if you were measuring an object with
a ruler and you were off by a fraction of a millimeter, then you would have a
random error.

Random error usually skews measured values higher and lower with equal
probability. If this is the case, then it possible to eliminate it by averaging,
which we will denote averaging by enclosing the expression in angle brackets
or covering it with a bar. First, we represent the value of a measurement by
breaking it down into three components.

Measurement = True Value + Systematic Error + Random Error

Now averaging is distributive so we have

〈Measurement〉 = 〈True Value〉+ 〈Systematic Error〉+ 〈Random Error〉
1If an error source skews the measured values by a roughly constant amount in one direc-

tion, but has a slightly different effect each time, then it is probably an error source that has
both a systematic and a random component.
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The first two terms on the right hand side are just constants, so we can drop
the averaging symbols on them. The last term has an average of approximately
zero in most cases yielding

〈Measurement〉 = True Value + Systematic Error

We can’t get rid of the systematic error with statistical methods, but by using
quality equipment and improving our experimental technique we can usually
reduce systematic error to a negligible level. Therefore, if you average your
measured values and take care to minimize systematic error then you will obtain
a result that is approximately equal to the true value.

It is not always the case that random error cancels with averaging. For
example, if you are measuring the speed of a rolling ball and there is an inter-
mittent breeze that is always in the same direction, then there will be a random
error in the speed that biases it in one direction. Averaging will not be able to
eliminate this type of random error.

2 Measuring Error

A good way to visualize the outcome of an experiment is with a histogram. A
histogram is a chart made by stacking up squares in columns based on the
values of measurements, with one square added per measurement. This makes
the more frequent results form taller columns.

Figure 1: Sample Histogram

In this figure, each square represents one measurement of a quantity X. The
value of the measurement, which we call x, is the number of the column that it
lies in. We can write the value of the ith measurement as xi. Most quantities that
we measure are not always integers, but we can still use histograms by making
each column a bin that collects any value falling within a specific range. We will
refer to the shape that the histogram forms as a distribution of measurements.
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There are two distinct measures of the error of a result, accuracy and pre-
cision. The accuracy tells you how close your result is to the accepted result.
Accuracy is almost always expressed in terms of the percent error 2, which is
given by

Experimental Result−Accepted Result
Accepted Result

× 100 (1)

The precision tells you how consistent your measured values are, with
higher precision indicating that all of your data points are clustered around
one value. Effectively, precision is a measure of the width of the distribution
for the experiment. In order to quantify the width of the distribution we need
a formula that accounts for the contribution to the spread by each measured
value. The first thing that comes to mind is the deviation of each value, which
is given by

di ≡ xi − x̄ (2)

but this won’t help to much because if we average the deviation over all the
values, we will usually get an answer close to zero. This is because random
error usually is equally likely to skew the values in either direction from the
average and this will cause the deviations to cancel positive with negative. But
there is a quick fix for this—we can just take the absolute value of the deviation
and average that. This defines the mean deviation 3

αOX
= 〈|xi − x̄|〉 (3)

where the subscript OX indicates that the expression is computed using the
outcome of the experiment measuring the quantity X.

The mean deviation is not used vary often. Instead of taking the absolute
value, the square of the deviation is used. The square is again always positive,
but it is more convenient than the absolute values because squares are easier
to work with analytically and there are other advantages that we will see soon.
Averaging the square of the deviation and taking the square root yields the
standard deviation 4

σOX =
√
〈(xi − x̄)2〉 (4)

There is a useful identity involving the standard deviation that can be de-
rived easily.

σ2
OX

=
〈
(xi − 〈xi〉)2

〉
=

〈
x2

i − 2xi〈xi〉+ 〈xi〉2
〉

= 〈x2
i 〉 − 〈2xi〈xi〉〉+ 〈xi〉2

= 〈x2
i 〉 − 2〈xi〉2 + 〈xi〉2 = 〈x2

i 〉 − 〈xi〉2

Now we want to consider the shape that a histogram of the outcome would
take if we had performed an infinite number of measurements. This limiting

2Percent error is also called percent deviation
3The mean deviation is also called the average deviation
4This is the biased or population standard deviation. There are arguments that it is better

to divide by N-1 instead of N in the average, but we will not pursue that here. In Microsoft
Excel, the population standard deviation is stdevp.
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distribution would give us a sense for what the error itself really looks like
instead of just seeing a few pieces of the puzzle. Without further information
about the measurement process, we can’t be sure what the histogram would look
like. But the central limit theorem proves that if the measurement process is
affected by many independent random errors, then the limiting distribution of an
infinite number of measurements will be approximately a Gaussian distribution.
Whether or not this is the reason, it is true that very often random error in
measurements produces a Gaussian distribution, which is a bell-shaped curve
with the functional form

G(x) = Ae−
(x−µ)2

2σ2 (5)

where A is the height parameter, σ is the width parameter, and µ is the center
of the peak.

Figure 2: Gaussian Distribution

We can now view this continuous distribution as the real form of the random
error and we can perform statistical operations on the function rather than on
the discrete data points. In this way, we treat the quantity X that we are
measuring as a random variable. The actual value of a random variable is
not just a single number, it can take on many specific values, just as many
repeated measurements of the same quantity can take on many values. But
a random variable’s value is not completely random, it takes on values with a
certain probability distribution. Every random variable X has a corresponding
probability distribution ρX which determines the probability of each specific
value of X. The probability distribution is a function such that the probability
that X takes on the specific value x is proportional to ρX(x). As we just realized,
the probability distribution will look like a Gaussian distribution. When dealing
with continuous random variables that can take the value of any real number,
the probability of getting a specific value x is always zero, but the probability
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of x falling in some range can be non-zero. To be precise, we can write the
probability that X takes on a value between x1 and x2 as

P (x1 ≤ X ≤ x2) =
∫ x2

x1

ρX(x) dx (6)

Notice that X must always take on a value between −∞ and ∞ so P (−∞ ≤
X ≤ ∞) = 1 and therefore

1 =
∫ ∞

−∞
ρX(x) dx (7)

This equation indicates that the probability distribution is normalized, which
just means that its integral over all values of x is equal to 1.

The variance of a distribution is simply the square of its standard deviation.
We can translate the definition of standard deviation to get an expression for
variance that utilizes the probability distribution.

σ2
X = 〈(xi − x̄)2〉

=
1
N

N∑

i=1

(xi − x̄)2

for a distribution containing N measured values. Next we switch the variable
of summation from the index i to the values x, where we must assume that the
values are all integers. But there can be many values of i that all have the same
value, so we must introduce a factor n(x) which is the number of values in the
distribution with value x.

=
1
N

∞∑
x=−∞

(x− x̄)2n(x)

If we drop the requirement that x must be an integer, then we have to convert
the sum to an integral.

=
∫ ∞

−∞
(x− x̄)2

n(x)
N

dx

In the limit N → ∞, n(x) increases along with N so that n(x)/N → ρ(x).
Therefore

σ2
X =

∫ ∞

−∞
(x− x̄)2ρX(x) dx (8)

One of the other reasons why the standard deviation is used as a measure
of precision is that the standard deviation of a Gaussian is exactly half of the
width of the peak at half the height of its maximum. It turns out that if you
integrate a Gaussian probability distribution from x̄ − σX to x̄ + σX you get
about 0.6827.5 This means that about 68.27% of measurements will yield a
value that lies within one standard deviation of the average value.

5The integral of the Gaussian distribution is not analytical, it is called the error function.
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When presenting results it is desirable to include an estimate of the error
right with the result itself. This is accomplished by appending a distance that
the true value should lie within. By convention, the distance used is just the
standard deviation. It is true that there is a reasonable chance that the true
value will not fall within one standard deviation of the result, but under normal
circumstances the only distance that we could be sure the true value lies within
would be far too large to be of use. This is because there is usually a slight
probability that any given measurement will give a value that is very far from
the true value. Therefore it is convenient to just state results as

Xo = x̄± σX (9)

After this form is obtained, it can be compared with other experiments for
consistency. Two results Xo = x̄ ± σX and X ′

o = x̄′ ± σ′X are consistent iff
|x̄− x̄′| ≤ σX +σ′X .6 In other words, two results are consistent iff the half width
at half maximum of their probability distributions overlap.

3 Worst-Case Error Propagation

So far we have seen the standard deviation used on the outcome of an exper-
iment to get a sense of the spread of the data. It is also possible to estimate
the expected standard deviation of the outcome by accounting for each of the
random error sources, which is called error propagation. It will take some
mathematical work to derive the error propagation formula, but first we need to
know how to account for the random error sources. First of all we must assume
that we are aware of all the random error sources. This is usually not a problem
because we just treat each measured quantity as having one combined random
error source, which may in fact include many independent error sources. If we
are directly measuring the quantity of interest, then that is all there is to it—
the expected standard deviation is the standard deviation of the distribution
of measurements. The only problem is that we do not know the distribution
of measurements before we make them, so how can we know it’s standard de-
viation? This is where we can make an estimate. The least count is the size
of the smallest division on the measuring device. A competent experimenter
using working equipment should rarely make errors larger than the least count.
In fact, you should always be able to round to the correct division, so you will
probably always be within half of the least count. For example, on a normal
ruler the least count is 1mm and you should never be off by more than 0.5mm.
But clearly there is a good chance that your measured value will differ from
the true value by 0.1mm, so there is some nonzero spread to the distribution of
measurements. A good rule to use is to assume the standard deviation of your
distribution of measurements is half of the least count. This means that about
68% of your measurements lie within half a least count from the true value.

6This definition can be relaxed a little because of the fact that there is a decent chance
that the true value lies outside one standard deviation in both experiments.
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Note that this asssumes that the systematic error has been brought down to a
negligible level.

So we have handled the case where we are directly measuring the quantity
of interest, but that is not usually how experiments are done. Most experiments
involve several measurements whose results are plugged into an equation to get
the final result. For example, if you are measuring the area of a rectangle, you
must measure the width and the height, and then plug these results into the
formula A = w∗h. The error in measuring the width and height is known based
on the least count, but what amount of error do these error sources produce
in the result for the area? This is where the error propagation formulas are
needed.

There is only one error propagation formula that you need to know, which
will be derived at the end, but there are other formulas which are either ap-
proximations or special cases of the final formula. The simplest type of error
propagation formula is the worst case type. Formulas of this type just find the
highest and lowest possible values of the result for values of the parameters which
lie within their error bounds. The formulas for addition and multiplication of
parameters are shown below.

F (X, Y ) = X + Y ⇒ σF ≤ σX + σY

F (X, Y ) = X ∗ Y ⇒ σF

|f̄ | ≤
σX

|x̄| +
σY

|ȳ|
Error in the form σX/x̄ is called relative error. In contrast, error in the

regular form σX is called absolute error. We will not be using this simple
form of error propagation because it usually gives an overestimate of the error
because it is not so likely that the results of both parameters will be off from
the true value in the same direction.

4 Convolution

Consider a random variable F that is the sum of the two random variables X
and Y , so F (X,Y ) = X + Y . We want to find the error propagation formula
that gives the standard deviation of F in terms of the standard deviations of X
and Y . It turns out to be more convenient to use the variances, but the standard
deviation can be obtained simply by taking the square root. For simplicity, we
will assume that the probability distributions of X and Y are centered on zero,
and hence so is the probability distribution for F . It can be shown that shifting
the distributions in this way does not affect the standard deviation of F , but
we will not need this to proceed.

σ2
F =

∫ ∞

−∞
f2ρF (f) df

The probability distribution ρF (f) is determined by adding up all the proba-
bilities for different ways that x + y = f . For each given pair x, y that satisfies
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this equation, the probability is ρX(x)ρY (y). But there are an infinite number
of pairs x, y which satisfy this equation, so we must integrate over all of them.
This is called the convolution of the distributions ρX and ρY .

σ2
F =

∫ ∞

−∞
f2

[∫ ∞

−∞
ρX(α)ρY (f − α) dα

]
df

Switching the order of integration,

σ2
F =

∫ ∞

−∞
ρX(α)

[∫ ∞

−∞
f2ρY (f − α) df

]
dα

Let u = f − α so du = df since α is a constant for the f integral.

σ2
F =

∫ ∞

−∞
ρX(α)

[∫ ∞

−∞
(u + α)2ρY (u) du

]
dα

σ2
F =

∫ ∞

−∞
ρX(α)

[∫ ∞

−∞
(u2 + 2αu + α2)ρY (u) du

]
dα

σ2
F =

∫ ∞

−∞
ρX(α)(σ2

Y + α2) dα

where the 2αu term is zero because the probability distribution is symmetric
about zero.

σ2
F =

∫ ∞

−∞
α2ρX(α) dα + σ2

Y

σ2
F = σ2

X + σ2
Y (10)

This is the correct formula for error propagation in the special case of addition
of two quantities.

5 Linear Combinations of Quantities

The formula of the previous section can be generalized to handle an arbitrary
linear combination of random variables. First we need to understand the effect
of multiplying a random variable by a constant. Without even checking the
math, we can see that mutliplying a distribution by a constant c scales it by a
factor of c, and since the standard deviation is proportional to the width of the
distribution, the standard deviation likewise scales by a factor of C.

F (X) = cX ⇒ σF = cσX

Now if we consider a linear combination of two variables, we can consider each
term to be a function of the previous form.

F (X1, X2) = c1X1 + c2X2 = F1(X1) + F2(X2)

⇒ σ2
F = σ2

F1
+ σ2

F2
= c2

1σ
2
X1

+ c2
2σ

2
X2
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A linear combination of three random variables can be handled by combining
two of them into one function.

F (X1, X2, X3) = c1X1 + c2X2 + c3X3 = F12(X1, X2) + F3(X3)

⇒ σ2
F = σ2

F12
+ σ2

F3
= c2

1σ
2
X1

+ c2
2σ

2
X2

+ c2
3σX3

2

And by repeating this process over and over, we can get the formula for an
arbitrary linear combination of n random variables.

F (X1, ..., Xn) = c1X1 + · · ·+ cnXn ⇒ σ2
F = c2

1σ
2
X1

+ · · ·+ c2
nσ2

Xn
(11)

6 Error Propagation Formula

We are finally in a position to derive the general error propagation formula for
independent random errors. Let’s say the desired quantity F is a function of
the n random variables X1, ..., Xn. If we assume that errors in each random
variable are small, then we can approximate the function F with the multi-
variable Taylor series around the centers of each probability distribution.

F (X1, ..., Xn) = F (x̄1, ..., x̄n) +
∂F

∂X1
(X1 − x̄1) + · · ·+ ∂F

∂Xn
(Xn − x̄n)

where the partial derivatives are evaluated at X1 = x̄1, ..., Xn = x̄n. This is
just a linear combination of the random variables (Xi− x̄i) which each have the
same standard deviations as Xi since they are just shifted with respect to each
other. The partial derivatives are the constant coefficients. The first term has no
contribution to the standard deviation because it is just a constant. Therefore
by equation (11),

σ2
F =

(
∂F

∂X1

)2

σ2
X1

+ · · ·+
(

∂F

∂Xn

)2

σ2
Xn

(12)

7 Standard Deviation of the Average

This error propagation formula gives us a way to measure how effectively aver-
aging eliminates random error. Suppose we determine that every measurement
of quantity X has an error of σX . The function for the average of N measured
values is

F (X1, ..., XN ) =
X1 + · · ·+ XN

N

where each Xi refers to one measurement of the quantity X. Applying the error
propagation formula to this F ,

σ2
F =

1
N2

σ2
X1

+ · · ·+ 1
N2

σ2
Xn
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But all the σXi are the same and equal σX . So since there are N terms total,

σ2
(avg) =

σ2
X

N
(13)

Evidently as we increase the number of measurements N , the error in the result
falls with a factor of

√
N .
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