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Let f be a function of two independent complex parameters z; and zo. We can reparameterize f to express
it in terms of just one complex variable and its complex conjugate by defining z = z1 +1i29 and 2* = z; —izs.
This allows us to write f(z1,22) = f(z,2*). The partial derivative of f with respect to z holds z* constant
on the approach to the limit.
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Therefore, the partial derivative is
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If we now restrict z; and 29 to be real, they become the real and imaginary parts of z, which we write as
x and y respectively. Therefore, if z = x + iy for z,y € R,
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Similarly,

0f(z,2*) 10f 10f

dz*  20r 2idy
These partial derivatives can be evaluated by treating z and z* as if they were completely independent
parameters, which explains the reason for treating ¢ and ¢* as independent fields in quantum field theory.



