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1 Introduction

This paper uses natural units. This will be fixed later. Note that while the Klein-Gordon probability
density is not always positive, its integral over all space is constant with respect to time. I think we should
be aiming to obtain pg = p, where ¢ is the universal field for the case when there is one particle with wave

function 1.

2 Definition of Convolution

(Ax B)(x) = /dga;'A(x')B(x —x')

3 Autoconvolution of ©

(Wxw)(x) = /dac' o(x)o(x —x')
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5 Klein Gordon

Lets define oy, by
B16] = [ ' 0y (x)(6" +5) (<) Vol
Then we can apply the method of Lagrange multipliers with the constraint
N = d3/ N — d3li(*._ *)
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Ap(x) = /d3x’ oy (x)o(x" — x)
Ap(x) = /d3x’ oy (x)o(x — x')

Ap(x) = (o * @) (x)
If we take A = 1 then

g.b:ad,*w
¢=0Gy*d

—QxWHW =0y *W

If & has a convolution inverse,
—pxw =0y
—q‘ﬁ *W = 0y
—Oy ¥ W W = 0y
(VZ = m?)oy = Gy

Therefore, o, must obey the Klein-Gordon equation. Notice that we have both b= oyp*w and oy = —P*w
so we cannot have ¢ = oy,.



