4. Quantum Mechanics (Fall 2003)

An operator A, corresponding to an observable α , has two normalized eigenfunctions ϕ_1 and ϕ_2 , with distinct eigenvalues a_1 and a_2 , respectively. An operator B, corresponding to an observable β , has normalized eigenfunctions χ_1 and χ_2 , with distinct eigenvalues b_1 and b_2 , respectively. The eigenfunctions are related by:

$$\phi_1 = (2\chi_1 + 3\chi_2)/\sqrt{13}$$
$$\phi_2 = (3\chi_1 - 2\chi_2)/\sqrt{13}.$$

An experimenter measures α to be $42\hbar$. The experimenter proceeds to measure β , followed by measuring α again. What is the probability the experimenter will measure α to be $42\hbar$ again?

We know that the system starts in an eigenstate of A with eigenvalue 42th, but we don't know if this is 10,2 or 142) so we will check both cases. (ase $|\phi_i\rangle$: $|\Psi_0\rangle$ A B $|\chi_1\rangle$ A $|\phi_1\rangle$ B $|\chi_2\rangle$ A $|\phi_2\rangle$ $B(x_i, y) = |\langle x_i, y \rangle|^2 = |\langle x_i, y \rangle|^2 = \frac{4}{12}$ P2(X2,4)=|(X2/4)|2=|(X2/4)|2= 9 P3 (4;4) = P2 (7, ;4) P3 (0, ; x1) + P2 (x2;4) P3 (4; x2) $= \frac{4}{13} |\langle \phi, |\chi_1 \rangle|^2 + \frac{9}{13} |\langle \phi, |\chi_2 \rangle|^2$ $=\left(\frac{4}{13}\right)^2+\left(\frac{9}{13}\right)^2=\frac{16}{169}+\frac{81}{169}=\frac{97}{119}$ (ase 102): 140) A B 1x1) A 101) $P_2(x, y, \psi) = |\langle x, | \psi \rangle|^2 = |\langle x, | \phi_2 \rangle|^2 = \frac{9}{13}$ $P_2(X_2; Y_1) = |\langle X_2 | Y_1 \rangle|^2 = |\langle X_2 | \Phi_2 \rangle|^2 = \frac{4}{13}$ P3 (P2; Y2) = P2 (x; Y1) P3 (P2; X1) + P2 (x2; Y1) P3 (P2; X2) $= \frac{9}{13} \left| \langle \Phi_2 | \chi_1 \rangle \right|^2 + \frac{4}{13} \left| \langle \Phi_2 | \chi_2 \rangle \right|^2$ $= \left(\frac{9}{13} \right)^2 + \left(\frac{4}{13} \right)^2 = \frac{81}{169} + \frac{16}{169} = \frac{97}{169}$

So in either case the probability is 97