11. Electricity and Magnetism (Fall 2004)

Using general principles, find the radiated power in vacuum of a non-relativistic point charge q whose position is $\mathbf{r}(t)$. You do not need to find dimensionless proportionality constants (i.e., only find the dependence on q, $\mathbf{r}(t)$, and universal constants).

We will use the general principle that the radiation field is an acceleration field that goes like $\frac{1}{r}$ $\Rightarrow \vec{E}_a \propto \frac{b}{4\pi\epsilon_0} \frac{e}{r} = a$ where $a=|\vec{r}(t)|$ is the acceleration and b is a constant of unknown dimension.

 $\vec{S} = \vec{h} \cdot \vec{E} \times \vec{B} = \vec{h} \cdot \vec{h} \cdot \vec{k} \quad \text{since } \vec{E} = \vec{k} \text{ and } \vec{E} \times \vec{B} = \vec{k} \text{ and } \vec{E} \times \vec{B}$ $\Rightarrow \vec{S} \times \vec{h} \cdot \vec{k} = \frac{e^2 a^2}{\mu_0 c} \hat{k} = \frac{\mu_0^2 \cancel{E} \cdot \vec{k}}{\mu_0 c} = \frac{e^2 a^2}{\cancel{E} \cdot \vec{k}} \hat{k} = \frac{\mu_0}{\mu_0 c} \hat{k} = \frac{\mu_0}{\mu_0$

P= Sapara de e2a2 Stocos(A) sin/A)do Satido a Mo e2a2