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1 Introduction

Our goal in this paper is to derive Maxwell’s equations in free space from basic quantum mechanics. In
an earlier paper1 we showed that the generator of time-evolution for any quantum state is an operator
for a conserved scalar quantity. Usually the conserved scalar quantity is the energy, so the generator of
time-evolution is proportional to the Hamiltonian. After inserting constants to fix dimensions, we obtain
Schrödinger’s equation

ĤΨ = i~
∂

∂t
Ψ

Now let’s apply Schrödinger’s equation to a wave function for a photon. The state will have to be a vector
since the electromagnetic field is vectorial. Special relativity requires that the operator for the energy of
a photon is Ê = c|p̂|. But this is not the operator that we will insert in Schrödinger’s equation because
there is another scalar conserved quantity for photons – helicity. The helicity operator is Λ̂ = ŝ · (p̂/|p̂|),
where ŝ = ~σ̂, the vector of spin-1 Pauli matrices times ~. Since we have two scalar conserved quantities
for photons, we construct the generator of time translation by multiplying these operators together.2 We
are free to multiply by scalar constants since constants do not change the fact that it is a conserved scalar
quantity, so we divide by ~ to obtain units of energy. Therefore we have

Ĥ = ÊΛ̂/~ = c|p̂|ŝ · (p̂/|p̂|)/~ = c(σ̂ · p̂)

The spin-1 Pauli matrices are

σx =

 0 0 0
0 0 −i
0 i 0

 σy =

 0 0 i
0 0 0
−i 0 0

 σz =

 0 −i 0
i 0 0
0 0 0


Therefore

Ĥ = c(σ̂ · p̂) = c

 0 −ip̂z ip̂y
ip̂z 0 −ip̂x
−ip̂y ip̂x 0

 = iĉ̂p
Here we have used the hat operator notation (the wide hat), which converts a vector into the matrix needed
to execute the cross product operation by that vector i.e. if u and v are vectors, then ûv = u× v.

2 Curl Equations

Using Ĥ = iĉ̂p, Schrödinger’s equation gives

i~
∂

∂t
Ψ = ĤΨ = iĉ̂pΨ = icp̂×Ψ

The momentum operator is p̂ = −i~∇ so

i~
∂

∂t
Ψ = ic(−i~)∇×Ψ

∇×Ψ =
i

c

∂

∂t
Ψ

1http://dfcd.net/articles/fieldtheory/schrodinger.pdf
2I don’t know if there is a general rule that you are supposed to multiply all operators for conserved scalar quantities.



Now to get to Maxwell’s equations, we need to relate Ψ to the electromagnetic fields. Of course all of the
information about the fields has to be contained within the state, but it isn’t immediately clear what the
exact relationship is. However, we can use the fact that the magnitude squared of the state represents
the probability density, which should be proportional to the electromagnetic field energy, 1

2(ε0E2 + 1
µ0
B2).

Multiplying the field energy by 2µ0, which has no effect on the resulting equations because both sides are
linear in Ψ, gives

Ψ∗Ψ = Re(Ψ)2 + Im(Ψ)2 ∝ 1
c2
E2 +B2

If we make the simplest assumption by setting Re(Ψ) = E
c and Im(Ψ) = B, then we obtain the Riemann-

Silberstein vector3

Ψ =
E
c

+ iB

Plugging into the previous curl equation, ∇×Ψ = i
c
∂
∂tΨ, we find

∇×
(

E
c

+ iB
)

=
i

c

∂

∂t

(
E
c

+ iB
)

This splits into two equations based on the real and imaginary parts

∇×E = −∂B
∂t

∇×B =
1
c2
∂E
∂t

These are the two curl equations of Maxwell’s equations in free space.

3 Divergence Equations

If we square Ĥ we get

Ĥ2 = Ê2Λ̂2/~2 = Ê2(σ̂ · p̂/|p̂|)2 = Ê2(p̂ · p̂/|p̂|2 + iσ̂ · (p̂× p̂)/|p̂|2) = Ê2

where we used the identity (a · σ)(b · σ) = (a · b)I + iσ(a× b). Therefore we have

Ĥ2Ψ = Ê2Ψ

(iĉ̂p)2Ψ = ĉ2p̂2Ψ

−c2p̂× (p̂×Ψ) = c2(p̂ · p̂)Ψ

(p̂ · p̂)Ψ− p̂(p̂ ·Ψ) = (p̂ · p̂)Ψ

i~∇(p̂ ·Ψ) = 0

p̂ ·Ψ = const = 0

where we used the triple-product identity a× (b× vc) = b(a · c)− (b · a)c. In the last line, the constant
must be zero because any other value would be completely arbitrary. This is the transversality condition.
Substituting the Riemann-Silberstein vector we obtain

∇ ·
(

E
c

+ iB
)

= 0

Again, this splits into two equations based on the real and imaginary parts.

∇ ·E = 0

∇ ·B = 0

These are the divergence equations of Maxwell’s equations in free space.
3The Riemann-Silberstein vector is often written as F.



4 Conclusion

We showed how to derive Maxwell’s equations in free space using basic quantum mechanics. Note that the
main difference between this derivation and that for massive particles is the inclusion of a helicity factor in
the generator of time-evolution. This suggests that the fact that helicity is preserved for massless particles
has a significant impact on the resulting field equations. It would be interesting to understand better why
that is the case. It would also be nice to understand the reason behind the form of the Riemann-Silberstein
vector.
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